Diode Application

WED DK2 9-10am
THURS DK6 2-4pm
Simple Diode circuit

Series diode configuration

From Kirchoff’s Voltage Law

\[E = V_D + I_D R \]

From previous lecture

\[I_D = I_S \left(e^{V_D/nV_T} - 1 \right) \]
Load line analysis

When \(V_D = 0 \, \text{V} \) then

\[I_D = \frac{E}{R} \bigg|_{V_D = 0} \]

When \(I_D = 0 \, \text{A} \) then

\[V_D = E \bigg|_{I_D = 0} \]
Example For the series diode below employing the diode characteristic beside it, determine V_{DQ}, I_{DQ} and V_{R}.

![Diode Circuit Diagram](image)

(a) Diode Circuit

(b) Diode Characteristic

$E = 10$ V

$R = 0.5$ kΩ

V_D (V)

I_D (mA)
For load line

\[I_D = \frac{E}{R} \bigg|_{V_D=0V} = \frac{10}{0.5 \, k\Omega} = 20 \, mA \]

\[V_D = E \bigg|_{I_D=0A} = 10V \]

By drawing the load line on the diode characteristic we obtained the

\[V_{DQ} = 0.78V \quad I_{DQ} = 18.5mA \]

\[V_R = I_R R = I_{DQ} R = 18.5mA \times 1 \, k\Omega = 18.5V \]
A diode is “ON” state if the current established by the applied sources is such that its direction matches that of the arrow in the diode symbol and $V_D > 0.7\text{V}$ for Si, $V_D > 0.3\text{V}$ for Ge, $V_D > 1.2\text{V}$ for GaAs.
A diode is “OFF” state if the current established by the applied sources is reversed the direction of the arrow in the diode symbol. Then $I_D = 0$
For the diode below determine V_D, V_R and I_D

\[V_D = 0.7V \]

Using equivalent circuit and KVL

\[V_R = E - V_D = 8V - 0.7V = 7.3V \]

\[I_D = I_R = \frac{V_R}{R} = \frac{7.3V}{2.2k\Omega} = 3.32mA \]
Repeat Example with the diode reverse. Thus the equivalent circuit is

\[I_D = 0 \text{ A} \quad V_R = I_R R = I_D R = 0V \]

Using equivalent circuit and KVL

\[V_D = E - V_R = 8V - 0V = 8V \]
If the diode is biased with the voltage source less than V_D, the diode also acts like an open circuit.

Diode Circuit

Diode Characteristic
With biasing less than 0.7V

Equivalent cct
Determine V_o and I_D for the series circuit below

Using equivalent circuit and KVL

\[V_o = E - V_{K1} - V_{K2} = 12V - 0.7V - 1.8V = 9.5V \]

\[I_D = I_R = \frac{V_R}{R} = \frac{9.5V}{680\Omega} = 13.97\,mA \]
Determine I_D, V_D and V_o for the circuit below

Since open circuit

$$I_D = 0mA \quad V_{D1} = 0V$$

$$V_o = I_R R = I_D R = 0 \times R = 0V$$

And using KVL we have

$$V_{D2} = E - V_{D1} - V_o = 20V - 0V - 0V = 20V$$
Determine I, V_1, V_2 and V_o for the series circuit below

Applying KVL in loop 1

\[I = \frac{E_1 + E_2 - V_D}{R_1 + R_2} = \frac{10V + 5V - 0.7V}{4.7k\Omega + 2.2k\Omega} = 2.07mA \]

\[V_1 = IR_1 = 2.07mA \times 4.7k\Omega = 9.73V \]

\[V_2 = IR_2 = 2.07mA \times 2.2k\Omega = 4.55V \]

And using KVL in loop 2

\[V_o = V_2 - E_2 = 4.55V - 5V = -0.45V \]
Determine V_o, I_1, I_{D_1} and I_{D_2} for the parallel diode below.

Since the source voltage is greater than the diode then the current flow and the voltage across diode is 0.7V, thus $V_o - 0.7V$.

The current is

$$I_1 = \frac{V_R}{R} = \frac{E - V_D}{R} = \frac{10V - 0.7V}{330\Omega} = 2.818mA$$

Since diodes are similar thus the current will be same, then

$$I_{D1} = I_{D2} = \frac{I_1}{2} = \frac{28.18mA}{2} = 14.09mA$$
Two LEDs are used for polarity detection. Positive green and negative red. Find R to ensure 20mA through “on” diode. Both diodes have a reverse breakdown voltage of 3V and an average turn-on voltage of 2V.

Note: Since the turn-on voltage is 2V so it does not exceed the reverse breakdown (3V) of the red LED. Otherwise it will damage the red diode.
Solution

Applying Ohm’s law. The current is

\[I = 20mA = \frac{E - V_{LED}}{R} = \frac{8V - 2V}{R} \]

Therefore

\[R = \frac{6V}{20mA} = 300\Omega \]
What happen if we replace with LED having turn-on voltage is 5V?

Applying Ohm’s law. The current now is

\[I = 20mA = \frac{E - V_{LED}}{R} = \frac{8V - 5V}{R} \]

Therefore

\[R = \frac{3V}{20mA} = 150\Omega \]

But this time the reverse biased for red LED will be 5V and exceed the breakdown voltage. The red LED will damage.
The Si diode has a breakdown voltage of 20V which will stay “off” state when the apply voltage is less than 20V. So will protect the red LED.
Determine the voltage V_o for the network below

The voltage across diode is the lowest one since it will “on” first and the other still stay “off” state. Thus

$$V_o = 12V - 0.7V = 11.3V$$
Determine the currents I_1, I_2, and I_D for the network below.

Since R_1 is // D_2 then voltage is same

\[I_1 = \frac{V_{K_2}}{R_1} = \frac{0.7V}{3.3k\Omega} = 0.212mA \]

Applying KVL in loop 1

\[V_2 = E - V_{K_1} - V_{K_2} = 20V - 0.7V - 0.7V = 18.6V \]

Therefore

\[I_2 = \frac{V_2}{R_2} = \frac{18.6V}{5.6k\Omega} = 3.32mA \]

and

\[I_{D2} = I_2 - I_1 = 3.32mA - 0.212mA \approx 3.11mA \]
OR Gate

Determine V_o and I for network below

From fig. on the right apply KVL

$$V_o = E - V_{D1} = 10V - 0.7V = 9.3V$$

and

$$I = \frac{E - V_{D1}}{R} = \frac{10V - 0.7V}{1k\Omega} = 9.3mA$$
OR gate

Determine the output level for the positive logic AND gate below

Due to forward bias of D_2 the output voltage is $V_o = 0.7 V$

From fig. on the right apply KVL

$$I = \frac{E - V_K}{R} = \frac{10V - 0.7V}{1k\Omega} = 9.3 mA$$
Half-Wave Rectification - Sinusoidal Input

Sinusoidal input

Forward bias

Reverse bias
For ideal rectifier the dc voltage (rms) $V_{dc} = 0.318V_m$ but the diode is conducted after the voltage supplied is more than 0.7V as shown below so the dc voltage will be reduced. Thus V_{dc} is

$$V_{dc} \approx 0.318\left(V_m\right) \quad \text{ideal}$$

$$V_{dc} \approx 0.318\left(V_m - V_K\right) \quad \text{practical}$$
Example; Circuit as below
a. Sketch the output v_o and determine dc level of the output voltage for ideal diode
b. What is the practical diode
c. The V_m is increased to 200V
Solution

Ideal diode circuit

\[V_{dc} \approx 0.318(V_m) = -0.318(20V) = -6.36V \]
\[V_{dc} \approx 0.318(V_m - V_K) = -0.318(20V - 0.7V) = -6.14V \]

Drop about 0.22V or 3.5%

(b) \[V_{dc} \approx 0.318(V_m) = -0.318(200V) = -63.6V \] (ideal)

\[V_{dc} \approx 0.318(V_m - V_K) = -0.318(200V - 0.7) = -63.38V \] (practical)

Drop about 0.22V or 0.35%
The diode rating is stated as peak inverse voltage (PIV) or peak reverse Voltage (PRV). PIV of diode must be greater than the applied voltage otherwise the diode will damage or enter the Zener avalanche region.

\[\text{PIV(rating)} > V_m \]

half-wave rectifier
Full-wave rectifier

Using four diode in certain arrangement such that the circuit are able to rectifier another half of the sinusoidal wave.
First half
Second half
ideal

\[V_{dc} = 2(0.318V_m) = 0.636V_m \]

Practical diode

\[V_{dc} \cong 0.636(V_m - V_K) \]
Diode Rating

\[PIV > V_m \]
Center-Tapped Transformer

This is another way to get a full-wave rectification. However the PIV \(\geq 2 V_m \)
How this works.
Apply KVL \[PIV = V_{\text{secondary}} + V_R = V_m + V_m = 2V_m \]

Therefore \[PIV \geq 2V_m \]
Determine the output for the network below and calculate the output dc level and the required PIV of each diode.
Solution

From the 2nd Fig \[V_o = \frac{1}{2} V_i = \frac{1}{2} (10V) = 5V \]

Therefore \[V_{dc} = 0.636(V_o) = 0.6363(5V) = 3.18V \]

\[PIV \geq V_m = 5V \]
Rectifier Circuits

- One of the most important applications of diodes is in the design of rectifier circuits. Used to convert an AC signal into a DC voltage used by most electronics.
Simple Half-Wave Rectifier

• Only lets through positive voltages and rejects negative voltages

• This example assumes an ideal diode

• What would the waveform look like if not an ideal diode?
Full-Wave Rectifier

- To utilize both halves of the input sinusoid use a center-tapped transformer...
Bridge Rectifier

• Looks like a Wheatstone bridge. Does not require a center-tapped transformer.

- Requires 2 additional diodes and voltage drop is double.
Peak Rectifier (filtering)
BATTERY CHARGER

Switching to choose 2A or 6A

Diode rectifier to change the sinusoidal wave from transformer to develop the dc current. Some charger may have filtering and regulator to improve dc level. Transformer is to step down the main voltage to required one.
CLIPPERS.

Clippers are networks that employ diodes to “clip” away a portion of an input signal without distorting the remaining part of the applied waveform. The simplest form of diode clipper is one resistor and a diode similar like half-wave rectifier. There are two categories: series and parallel

Series clipper (diode in series)

![Circuit](a)

![Squared waveform](b)

![Triangular waveform]
CLIPPER WITH DC SUPPLY.

First where the output is? In this case it is at R.
Secondly see any dc supply that oppose the input signal. The system will be “off” state until the input voltage is greater than the diode and the opposed voltage

\[V_m = V_{dc} + V_{diode} \]

Output \[V_o = V_m - V_{dc} - V_{diode} \]

For ideal case \[V_o = V_m - V_{dc} \]

At transition state \[V_o = I_R R = (0)R = 0V \]
Analysis for ideal diode

After conduction

\[V_o = V_m - V_{dc} \]
Determine the output waveform for the sinusoidal input

From Fig. transition state will occur at

\[V_i + 5V = 0V \]

\[V_i = -5V \]
After transition using KVL, the peak is

\[V_o = V_m + 5V \]

\[V_o = 20V + 5V = 25V \]

The waveform is seen to be off-set by 5V
Determine the output waveform for the square wave input as shown in the Fig.

For $0 \rightarrow T/2$

$$V_o = 20V + 5V = 25V$$

For $T/2 \rightarrow T$

$$V_o = 0V$$
Parallel Clipper

Circuit

Square wave input

Triangular wave input

*Here, the diode is shunted in the circuit
Determine V_o for the following network.
The transition level will be at $V_i = 0$ since $i_d=0$

When V_i more than $V=4\, \text{V}$, V_o will follow V_i

When V_i less than $V=4\, \text{V}$, V_o will stay at $V=4\, \text{V}$
If the diode has $V_K = 0.7V$, find V_o.

Applying KVL at transition will be

$$V_i + V_K - V = 0V$$

$$V_i = V - V_K = 4V - 0.7V = 3.3V$$
When $V_i > 3.3V$ then $V_o = V_i$

When $V_i < 3.3V$ then

$$V_o = 4V - 0.7V = 3.3V$$