CLAMPERS

A clamper is a network constructed of a diode, a resistor and a capacitor that shifts a waveform to a different dc level without changing the appearance of the applied signal.

Analysis (ideal diode)

Operation at forward biased, the diode is short circuited (i.e "on" state). The voltage will be $v_{0}=0$ since the current is shorted thru diode and the capacitor is charged up to a voltage V .

Analysis

During reverse biased, the diode is open circuited (i.e "off" state). The voltage will be $v_{0}=0$ since the current is shorted thru diode.
The voltage across R will be
$\mathrm{V}_{\mathrm{dc}}+\mathrm{V}_{\mathrm{c}}=-\mathrm{V}+(-\mathrm{V})=-2 \mathrm{~V}$

Result

Determine v_{o} for the following network with the input shown (for ideal diode).

Solution: Frequency is 1000 Hz , then the period will be $1 / \mathrm{f}=$ 1 ms , so the interval for each level state is $t_{1}=0.5 \mathrm{~ms}$. At first interval the diode is open circuited, so no current at output, therefore $\mathrm{v}_{\mathrm{o}}=0$

Analysis (forward biased)

At $2^{\text {nd }}$ interval, the diode is short circuited, the voltage across R will be the same as across the batery (parallel) $\quad V_{0}=5 \mathrm{~V}$ The voltage that charge up the capacitor, Applying KVL $-20 V+V c-5 V=0$, then $V_{C}=25 V$

The third interval will make the diode open circuited again and current start to flow in the resistor (discharged the capacitor). Applying the KVL Give us

$$
\begin{gathered}
+10 V+25 \mathrm{~V}-v_{0}=0 \\
v_{0}=35 \mathrm{~V}
\end{gathered}
$$

Noted : the discharge time is can be determined as $\mathrm{t}=\mathrm{RC}$ $\mathrm{RC}=100 \mathrm{k} \Omega \times 0.1 \mathrm{mF}=0.01 \mathrm{~s}=10 \mathrm{~ms}$
Total discharge $5 \mathrm{t}=5 \times 10 \mathrm{~ms}=50 \mathrm{~ms}$ which is \gg interval time which allow the capacitor to hold significantly the input voltage.

The result

Practical case with diode of $\mathrm{V}_{\mathrm{k}}=0.7 \mathrm{~V}$

At second interval $v_{0}=5 \mathrm{~V}-0.7 \mathrm{~V}=4.3 \mathrm{~V}$ and the charging up voltage $-20 \mathrm{~V}-5 \mathrm{~V}+0.7 \mathrm{~V}+\mathrm{V}_{\mathrm{c}}=0$ Therefore $\quad V_{c}=24.3 \mathrm{~V}$

Circuit

The third interval we have
$10 \mathrm{~V}+24.3 \mathrm{~V}-v_{0}=0$
Thus $v_{0}=34.3 \mathrm{~V}$
result

Clamping Networks Other example of clampers

The clamper also work well for sinusoidal wave.

ZENER DIODES

Showing the equivalent circuit at each state in V-I characteristic

Determine
(i) the voltages at references Vol and Vo2
(ii) the current thru LED and the power delivered by the supply (iii) How does the power absorbed by the LED compare to that 6V Zener diode

$$
\begin{aligned}
& \mathrm{V}_{01}=\mathrm{V}_{\mathrm{Z2}}+\mathrm{V}_{\mathrm{K}}=3.3 \mathrm{~V}+0.7 \mathrm{~V}=4.0 \mathrm{~V} \\
& \mathrm{~V}_{02}=\mathrm{V}_{01}+\mathrm{V}_{\mathrm{K}}=4 \mathrm{~V}+6 \mathrm{~V}=10 \mathrm{~V} \\
& I_{R}=I_{L E D}=\frac{V_{R}}{R}=\frac{40 \mathrm{v}-V_{02}-V_{L E D}}{1.3 \mathrm{k} \Omega}=\frac{40 \mathrm{v}-10 \mathrm{~V}-4 \mathrm{~V}}{1.3 \mathrm{k} \Omega}=20 \mathrm{~mA}
\end{aligned}
$$

A LIMITER

(c)

Fixed V_{i} and R as a dc regulator

A simplest Zener diode regulator network

To determine the state of Zener diode by removing the diode from the network

Thus applying voltage divider rule

$$
V=V_{L}=\frac{R_{L} V_{i}}{R+R_{L}}
$$

If $\mathrm{V} \geq \mathrm{V}_{\mathrm{Z}}$, the Zener diode is on.
If $\mathrm{V}<\mathrm{V}_{\mathrm{Z}}$, the Zener diode is off.

Zener equivalent for the "on" situation

Since Zener is directly parallel to R_{L}, then $V_{L}=V_{Z}$
Zener current, applying Kirchoff's current law $I_{R}=I_{Z}+I_{L}$
Thus

$$
I_{Z}=I_{R}-I_{L}
$$

And Power $P_{z}=V_{z} I_{z}$

Ex: Determine V_{L}, V_{R}, I_{Z} and P_{Z}

Applying voltage divider rule $V=\frac{R_{L} V_{i}}{R+R_{L}}=\frac{1.2 \mathrm{k} \Omega(16 \mathrm{~V})}{1 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}=8.73 \mathrm{~V}$
Since $\mathrm{V}=8.73 \mathrm{~V}$ is less than 10 V , the diode is in the "off" state
Thus $\mathrm{V}_{\mathrm{L}}=\mathrm{V}=8.73 \mathrm{~V}$

$$
\text { And } \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{L}}=16 \mathrm{~V}-8.73 \mathrm{~V}=7.27 \mathrm{~V}
$$

Since the Zener is off, then $I_{Z}=0$ and $P_{z}=V_{Z} I_{Z}=0 W$

Ex: Determine $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Z}}$ and P_{Z}

Applying voltage divider rule

Since $\mathrm{V}=12 \mathrm{~V}$ is greater than $\mathrm{V}_{\mathrm{z}}=10 \mathrm{~V}$, the Zener is in "on" state Therefore $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Z}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{L}}=16 \mathrm{~V}-10 \mathrm{~V}=6 \mathrm{~V}$

$$
\begin{aligned}
& I_{L}=\frac{V_{L}}{R_{L}}=\frac{10 \mathrm{~V}}{3 \mathrm{k} \Omega}=3.33 \mathrm{~mA} \quad I_{R}=\frac{V_{R}}{R}=\frac{6 \mathrm{~V}}{1 \mathrm{k} \Omega}=6 \mathrm{~mA} \\
& \text { and } \quad I_{Z}=I_{R}-I_{L}=6 \mathrm{~mA}-3.33 \mathrm{~mA}=2.67 \mathrm{~mA}
\end{aligned}
$$

To determine the resistor range

To determine the minimum load that can turn on the diode So that $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Z}}$ ' that is

$$
V_{L}=V_{Z}=\frac{R_{L} V_{i}}{R_{L}+R}
$$

Solving for R_{L} ' we have

$$
R_{L \min }=\frac{R V_{Z}}{V_{i}-V_{Z}} \quad \text { and } \quad I_{L \min }=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L \min }}
$$

Thus any resistance value greater than $R_{\text {Lmin }}$ will ensure that the Zener diode is in the "on" state

To determine the resistor range

Once the diode is in the "on" state, the voltage across R remains fixed at

$$
V_{R}=V_{i}-V_{Z}
$$

And IR remains fixed at $\quad I_{R}=\frac{V_{R}}{R}$
The Zener current

$$
I_{Z}=I_{R}-I_{L}
$$

But the I_{Z} is limited by the manufacturer $I_{Z M}$, then
$I_{L \min }=I_{R}-I_{Z M}$
And the maximum load resistance as $\quad R_{L \min }=\frac{V_{Z}}{I_{L \text { min }}}$

Determine the range of RL and IL that will result in VRL being maintained at 10 V

Calculating for minimum load $\mathrm{R}_{\mathrm{Lmin}}$

$$
R_{L \min }=\frac{R V_{Z}}{V_{i}-V_{Z}}=\frac{(1 k \Omega)(10 \mathrm{~V})}{50 \mathrm{~V}-10 \mathrm{~V}}=\frac{10 \mathrm{k} \Omega}{40}=250 \Omega
$$

The voltage across the resistor R is $V_{R}=V_{i}-V_{Z}=50 \mathrm{~V}-10 \mathrm{~V}=40 \mathrm{~V}$
This will give us

$$
I_{R}=\frac{V_{R}}{R}=\frac{40 \mathrm{~V}}{1 \mathrm{k} \Omega}=40 \mathrm{~mA}
$$

Continue

The minimum level of I_{L} is $I_{L \min }=I_{R}-I_{Z M}=40 \mathrm{~mA}-32 \mathrm{~mA}=8 \mathrm{~mA}$

$$
\begin{aligned}
& \text { Maximum load } R_{L \max } \quad \quad R_{L \max }=\frac{V_{Z}}{I_{L \min }}=\frac{10 \mathrm{~V}}{8 \mathrm{~mA}}=1.25 \mathrm{k} \Omega \\
& \text { Power } \mathrm{P}_{\max }=\mathrm{V}_{Z} I_{\mathrm{ZM}}=(10 \mathrm{~V})(32 \mathrm{~mA})=320 \mathrm{~mW}
\end{aligned}
$$

(a)

(b)

Fixed R_{L} and Variable V_{i}

The voltage V_{i} must be sufficiently large to turn the Zener diode on. The minimum turn on voltage $V_{i}=V_{i m i n}$ is

$$
V_{L}=V_{Z}=\frac{R_{L} V_{i}}{R_{L}+R} \quad \text { therefore } \quad V_{i \min }=\frac{\left(R_{L}+R\right) V_{Z}}{R_{L}}
$$

Since the maximum Zener current $I_{Z M}$, Thus $I_{Z M}=I_{R}{ }^{-1} L$
Then $I_{\text {RMAX }}=I_{Z M}+I_{L}$
The maximum voltage

$$
V_{i \max }=V_{R \max }+V_{Z} \quad \text { or } \quad V_{i \max }=I_{R \max } R+V_{Z}
$$

Determine the range of values of Vi that will maintain the Zener diode of in the "on" state.

Using the formula given before

$$
\begin{aligned}
& V_{i \min }=\frac{\left(R_{L}+R\right) V_{Z}}{R_{L}}=\frac{(1200 \Omega+220 \Omega)(20 \mathrm{~V})}{1200 \Omega}=23.67 \mathrm{~V} \\
& I_{L}=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L}}=\frac{20 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=16.67 \mathrm{~mA}
\end{aligned}
$$

$$
V_{i \max }=I_{R \max } R+V_{Z}
$$

Continue

$$
\begin{aligned}
& I_{R \max }=I_{Z M}+I_{L}=60 \mathrm{~mA}+16.67 \mathrm{~mA}=76.67 \mathrm{~mA} \\
& V_{i \max }=I_{R \max } R+V_{Z}=(76.67 \mathrm{~mA})(0.22 \mathrm{k} \Omega)+20 \mathrm{~V}=36.87 \mathrm{~V}
\end{aligned}
$$

The V_{i} range is plotted below

If the input is a ripple from full-wave rectified and filtering as shown, as long as within the specified voltage, the output will still remain constant at 20 V .

Voltage Multiplier

HALF-WAVE VOLTAGE DOUBLER

(a)During the positive voltage half-cycle across the transformer, the diode D1 conducts and D2 is cut off. The capacitor C1 charge up to peak rectified voltage V_{m}.
(b) Second half cycle, D2 conducts and D1 is cut-off. Now the capacitor C 2 is charged up with $\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{m}}=2 \mathrm{~V}_{\mathrm{m}}$

FULL-WAVE VOLTAGE DOUBLER

$$
2
$$

(a) Positive cycle, D_{1} is conducting, thus charging $C 1$ to V_{m}. D2 is not conducting so charging on capacitor C_{2}.
(b) Negative cycle, D_{2} is conducting, thus charging C_{2} to V_{m}. D_{1} is not conducting so C_{1} still maintain the charging voltage

HALF-WAVE DOUBLER, TRIPLER AND QUADRUPLER

By arranging alternately capacitor and diode, we are able to obtain voltage doubler, tripler and quadrupler. C1 plus transformer charging C2. C2 charging C3 and C3 charging C4.

Protective configuration

Transient phase of ${ }^{(\$)}$ simple RL cct

(b)

Arcing during opening the switch

Trying to change the current through an inductive element too quickly may result in an inductive kick that could damage surrounding elements or the system itself

The RL circuit may be used to control the relay

(a)

During closing the switch the coil will gain a steady current. When closing, the arcing may cause the problem to the relay.

This is the cheapest circuit to protect the switching system.

(b)

A capacitor is parallel to the switch. It is acting as a bypass (or shorting) the high frequency component.

A snubber is also to short circuit the high frequency component
The resistor in series is to protect the surge current.

Diode protection for RL circuit

A diode is placed parallel to the inductive element (relay). When switch open the polarity of voltage across coil will turn on the diode thus provide conduction path for the inductor. The diode must has the same current level to that current passing the coil

Diode protector to limit the emitter - base voltage

(a)
$V_{B E}$ is limited to 0.7 V (knee voltage of the silicon diode)

Diode protection to prevent a reversal in collection current

(b)

A current from B to C will be blocked by the diode

Diodes can be used to limit the input of OPAM to 0.7 V

Same appearance

Introduce voltage to increase limitation of the positive portion and limit to 0.7 V to the negative portion before feeding to OPAM

Limit to 0.7 V to negative portion

(b)

POLARITY INSURANCE

Diode polarity protection
(a)

This circuit is to prevent from mistaken connecting the battery with wrong polarity

If the polarity is okay then the diode circuit is in open state

(b)

If the polarity is not okay then the current is bypass thru diode. This will stop the battery to damage the \$ system

(c)

Battery - powered backup

When electrical power is connected D1 id "on" state and D2 will be "off" state, thus only electrical power is functioned. When electrical power is disconnected D1 is "off" state and D2 is conducted, thus the power will come from the battery.

Polarity detector using diodes and LED

For positive polarity green LED is lit

LED diodes are arranged for EXIT sign display.

Voltage Reference Levels circuit

To establish a voltage level insensitive to the load current

A battery is connected to a network that has different voltage supply and variable load. The battery available is 9 V but the network require 6 V . How?

Using external resistor

(b)

Let's say the load is $1 \mathrm{k} \Omega$, then using voltage divider, we determine the value of external resistor we obtain approximately 470Ω We calculate the V_{RL}, give us 6.1 V

Now if we change the load to 600 W but the external still same, then V_{RL} become 4.9 V ... thus the system will not operate correctly!!

Using diode

Using diode the voltage can be converted using 4 silicon diode which give a drop of voltage around 2.8 V , thus the required voltage of 6.2 V is obtained. This network does not sensitive to the load.

AC regulator and square-wave generator

(a)

Same configuration to produce square -wave

