
    Lecture 4

NOISE AND ITS ANALYSIS

Voltage and current in all components of electronic circuits are always accompanied by noise 
voltage and current, which are called just  noise.  The common feature of all  noises (they 
should  not  be  mixed  up  with  quasi-noise  signals)  is,  firstly,  impossibility  to  predict  the 
appearing of any specific value at any specific moment, i.e. its randomness and, secondly, 
its zero average value.

Main Definitions

Despite the fact that the average value of noise is equal to zero, it exists physically and the 
squared noise value is not equal to zero. The root-mean-square value of noise is determined 
in the following way:
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here  Т is the averaging time interval. The bigger the time interval  Т is, the more accurate 
values )(rmsnV   and  )(rmsnI  are.  It is clear that the squared values in (4.1) and (4.2)  are power 
being dissipated in 1 Ohm resistor if the root-mean-square voltage )(rmsnV , or constant voltage 
numerically equal to it, is applied to it, and also if the root-mean-square current  )(rmsnI , or 
constant one numerically equal to it, flows through the 1 Ohm resistor. 

The signal-to-noise ratio is determined as follows: 
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Here 2
xV  is the signal power,  2

nV is the noise power. 
Although  decibels  (dB)  refer  to  the  ratio of  two  values  according  to  their  definition  it 
appeared useful  to introduce the power value definition in  dB for  absolute values of the 
signal.  It  is  provisionally  accepted that  the  power  equal  to  1  mW is  called  1dBm.   For 
example, the power of 1 μW is designated as - 30 dBm. In case when voltages are indicated 
in  dBm,  1  dBm  is  defined  as  voltages  (root-mean-square  or  constant)  at  a  number  of 
resistors  (600  Ohm,  75  Ohm  and  50  Ohm),  at  which  the  same  powers  of  1  mW  are 
dissipated. 

Summation of noises

Let us consider the case of noise voltage sources connected in series and noise current 
sources connected in parallel (Fig. 2.4.1). 
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Let us define )()()()( 2100 tVtVtasVtV nnnn +=    (4.4)
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The first two terms in the right part (4.5) are noise powers of both sources.  The last term 
expresses  the  correlation between  the  noise  sources.  The  correlation  С is  commonly 
defined in the following way:
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Taking into account this definition (4.5) we can write:
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The correlation coefficient С satisfies the inequality 11 ≤≤− C .  If 1±=C ,  the two signals are 
fully correlated, if 0=C ,  the signals are not correlated. Intermediate values of С mean partial 
correlation.  Thus, in case of two non-correlated signals 

                        2
)(2

2
)(1

2
)(0 rmsnrmsnrmsn VVV += , (4.8)

in  case  of  fully  correlated  signals  (for  example,  two  sinusoidal  signals  with  the  same 
frequencies and phases of 0 or 180 degrees)
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In amplifying electronic circuits, the specific noise value in most cases is much lower than the 
set  or  expected  current  or  voltage  values.  Therefore  noise  voltages  or  currents  can  be 
considered not influencing characteristics of current and / or voltage dependent components 
(for example, the transistor transconductance), and noise voltages of two devices connected 
in series (or noise currents of two devices connected in parallel) do not correlate mutually.
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Fig.2.4.1.   Combining two noise sources:
               (a) of voltage and  (b) of current.



Noise analysis in the frequency domain

In view of the randomness and unpredictability of noise signal values its power  )(2 fVn  (or) 
)(2 fI n )   is  continuously  distributed  in  the  frequency  domain.   Due  to  the  continuous 

distribution the noise power in the infinitely small frequency band is equal to  zero!  When 
speaking about a specific spectral density of noise at some frequency, they mean the noise 
power in the 1 Hz frequency band by default, and the mentioned frequency is in the middle of 
this band. The total noise power can be obtained by integrating the noise density throughout 
the whole frequency spectrum:
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Let us consider passage of the noise signal )( fVni  through the filter with the transfer function 
)2()( fjAsA π=.  The spectral density )(0 fVn  of the noise power is equal to:
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The total noise power  )(20 rmsVn  is equal to
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The root-mean-square noise density value )(0 fVn  equals to

                            ( ) )(2)(0 fVfjAfV nin π=  (4.13)

As the root-mean-square noise value is defined in the way usual for the linear filter, by means 
of the transfer function module, but not through its square it is more convenient to use the 
root-mean-square value but not the noise power. 
Now, let us assume that the system noise )(20 fVn  is the sum N  of noise signals )(2 FVni , and 
each noise signal )(2 fVni  passes through the filter )2()( fjAsA ii π=.  Then 
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If the noise signals are not mutually correlated they do not correlate at the output either. 
 White noise
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                                             a)                                        b)

Fig. 2.4.2.  Equivalent circuit of the noisy resistor:
a) is the noise voltage source connected in series;
b) is the noise current source connected in parallel



White noise  is defined as noise with a constant spectral noise density independent of the 
frequency.  Resistor is the best known source of white noise. The resistor noise is simulated 
as a voltage source with the spectral density )(2 fVR  connected in series with the resistor:

                                        kTRfVR 4)(2 =  (4.15a)
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It should be noted that the symbol of the noise source itself in no way can be considered as 
an independent voltage source in the common representation of the noisy resistor Ri with the 
noise voltage source Vn(Ri) connected in series. Thereupon in Fig. 2.4.2, for example, there 
is no node between symbols of the voltage source and the resistor,   as they must be 
considered as a single unit.  This should be taken into account when analyzing and setting up 
Kirchhoff’s equations. 
Along with model (4.15) the resistor noise model is used equally as a current source with the 
spectral density  )(2 fI R  connected in parallel with the resistor:
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Noise Band 

As is well known, the ideal filter is a filter with a square amplitude-frequency characteristic 
within which the transfer coefficient module (gain) is equal to one and in the stopband it is 
equal to zero. Actual filters have a non-uniform amplitude-frequency characteristic in the pass 
band,  a  finite  slope  in  the  transition  band,  and  different-from-zero  transmission  in  the 
stopband. 
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Fig.2.4.3. Actual and ideal filters with identical powers 
of output noise with the same spectral densities of 
white noise at the inputs.



By the noise bandwidth they mean the pass band of the ideal square low-pass filter where 
the noise at the output is the same as at the considered actual filter output provided that 
identical sources of white noise are connected to the inputs of both filters.  
The passive RC filter of the first order is an obvious example filter. The following expression 
is the module of its transfer function (transfer coefficient versus frequency):
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where  
RC

f 12 00 == πω  is  the  frequency  of  the  passive  RС-filter  real  pole.  This  is  a 

representative example as, in fact, this filter exists in each system node in the system with 
real poles. Here the node capacitor,  which is an attribute of  any node of any system, is 
charged through the real resistor, which is called the output resistance in the node. 
Let  us  connect  to  the  filter  input  a  white-noise  source  with  the  frequency-independent 
spectral density:   constVfV nwni ==)(  (4.17)

The total power 2
)(rmsnoV  of the noise, which has passed through the filter, equals to:

( )
42

1

2 0
2

0
2

00
0

2

0
2

0

2
2

0

22
)(

ωππ nwnw
nw

nw
nwrmsno

VfV
f
farcrtgfVdf

f
f

VdffjHVV ==





=



















+

==
∞∞∞

∫∫
 (4.18)

The noise which is the same in value but has passed through the ideal square filter equals to:
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Comparing (4.18) and (4.19) we shall get:
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The calculation given above is aimed also at obtaining the fundamental expression below, 
which  is  used  in  analyzing  analog  circuits  on  switching  capacitors.  Let  us  calculate  the 
expression for the total power of the voltage noise on the passive RC-filter capacitor with a 
noisy resistor:
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The Elementary Sample–and-Hold Circuit Noise 
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Let the switch channel resistance make noise as a resistor of the Rds value. Then the root-
mean-square  noise  ( )rmsHnSV &  on  the  capacitor  С at  the  sampling  moment  equals  to  the 

fundamental value 
C
kT  and does not depend on the sampling number and rate. 

Example calculation of noise for the ARC circuit based on the CMOS OA
(1st order ARC filter)

                           a                                                                      b

Let the OA have an infinite amplification for  simplicity. Then the filter  transfer function at 
applying the input signal as in Fig. 2.4.5а, i.e. to the inverting input circuit, will be:
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Fig. 2.4.5.a        1st order ARC filter
Fig. 2.4.5.b        Equivalent circuit for the noise calculation

Fig.2.4.4.   Elementary sample-and-hold circuit with the finite resistance Rds of 
the switch channel
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The filter transfer function at applying the input signal to the non- inverting input will be:
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Now, some words about the relevancy of the chosen equivalent circuits of noisy resistors in 
Fig. 2.4.5b. As it can be seen from the figure, for R1 and Rf equivalent circuits with noise 
current sources connected in parallel are chosen, and for R2 and the OA a noise voltage 
source connected in series is chosen. The problem is that the voltage source connected in 
series at any place acts  as if it divided the noisy resistor as the whole system into parts. 
This may result in the wrong analysis logic and errors in circuits with a through current. If we 
look forward to an obvious model we should represent a noise voltage source with an output 
resistance equal to the resistor rated value instead of the noisy resistor.
As to noise current sources, they do not disturb the obvious integrity and symmetry of the 
noisy resistor, when connected in parallel; thus using this very representation in any current 
circuits is preferable and convenient. However, in circuits with no constant current flowing, as 
at the non-inverting input of the CMOS OA with actually infinitely high resistance it is correct 
and convenient to use noise voltage sources.
First, we shall study the response of the ARC circuit shown in Fig. 2.4.5b  to noise sources 
(current and voltage sources) separately (assuming that the others are equal to zero). Then 
we shall square the obtained output voltages, add them and get the total noise power at the 
output 2

)(rmsnoV . 

Response to the noise current source ( )1n RI .

It should be noted that there are constant potentials equal to zero at both R1 outputs and the 
current flowing through R1 equals to zero. 

The Kirchhoff’s equation: ( ) ( )( ) 
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Response to the noise current source ( )RfnI .
We still suppose the current through R1 equal to zero.
The Kirchhoff’s equation:
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As it can be seen from (4.25) and (4.27), the response to the noise current source in the OA 
inverting input circuit is equal to the voltage resulting from this current flowing in the resistor 
in  the  feedback  circuit  multiplied  by  the  transfer  coefficient  of  the  ARC  filter  without 
amplification.

Response to the noise voltage source  ( )2RnV .

The basic response comes to the fact that all the noise voltage ( )2RnV   is applied to the OA 
non-inverting input. As it is agreed that the OA has an infinite amplification the potential at the 
inverting input repeats completely the potential of the non-inverting input. 
The Kirchhoff’s equation: 
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We shall obtain:                       ( ) ( )
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Response to the voltage source of the Operational Amplifier equivalent noise reduced 
to the input.
It is most convenient to place this voltage source at the non-inverting input. The analysis is 
similar to the resistor R2 response analysis, thus, the result is also similar:

( ) ( ) ( ) ( )



















+
+=

ff

f

rmsOAnrmsOAout CsR
R
R

VV
1

1 122  (4.30)

139



Example calculation of the input referred noise of the CMOS differential stage with an 
active load

Let the operation current source on Мр3 have a large output 
resistance.  It  gives  an  opportunity  to  consider  that,  for 
example, a current increase in Мр1 by some value results in 
current decrease in Мр2 by the same value (this behavior is 
caused by the potential change on node В, which is a source 
both for  Мр1 and  Мр2). Let the mentioned current increase 
be due to  the internal  noise in  Мр1.  Thus,  the total  noise 
current  of  the  transistor  Мр1  is  halved  between  Мр1  and 
Мр2. The same with the noise current of  Мр2, i.e. half of it 
goes to Мр2 and the other half goes to Мр1. 
Let us consider transistors  Мn1 and Mn2. Source potentials 
are invariable for Mn1, as well as for Mn2, so intrinsic noise 
currents flow fully in them. However, it should be noted that 
Mn1 is  connected as a diode,  thus,  the current  change in 
Mn1, due to the noise, results in excess over the threshold 
( ) 1MnTGS VV −  and,  therefore,  the  potential  of  node  А. 
Additionally, in transistor Mn1 there is also a current, noise 
current  included,  of  transistor  Мр1  and,  consequently,  of 
halves of noise currents of transistors Мр1 and Мр2. All the 
above  mentioned  noise  currents  (Mn1  noise  current  and 

halves of Мр1 and Мр2 noise currents) modulate the potential of node А.  However, node А 
is connected with the gate of transistor Mn2, and transistor Mn2 becomes a source of the 
currents listed above, in brackets,  BUT OF THE OPPOSITE SIGN. This implies that the 
halves of Мр1 and Мр2 noise currents, “reflected” in Mn2 flowing in Mn1, are in phase with 
those halves of Мр1 and Мр2 noise currents which flowed in Мр2 “from the very beginning”. 
Mn1 noise current is fully “reflected” in Mn2, and Mn2 “intrinsic” noise current always flows in 
it.
Thus, in Mn2, and, therefore, in  Мр2, and in the differential stage output circuit total noise 
currents  of  four  transistors,  Мр1,  Мр2,  Mn1,  Mn2  flow,  and  their  squares  are  added 
arithmetically. It is clear, that phase coincidence of halves of  Мр1 and  Мр2 noise currents 
which “initially” were in Мр2 and “reflected” halves of the same currents is possible in LOW 
frequency area only, when the inevitable phase delay due to parasitic capacitances in nodes 
А and В can be neglected.
Now let us study the noise caused by transistor Мр3 in the output circuit.  The total current 

3MpI , generated by it is equal to ( )30 MpnII + , where 0I  is an operation current of the differential 
stage,  ( )3MpnI is a noise current of transistor  Мр3.  In the diode on Mn1 there is the current 

( )

2
30 MpnII +

 from Mp3, and the voltage ( ) 1MnTGS VV −  on the diode is equal to:
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Here:    
E

E
nMn L
WC µβ 01 = , where 0C  is the specific capacitance of the gate dielectric per 

unit  area,  nµ  is electron mobility,  EW  and  EL  are effective width and length of the Mn1 
channel;   1Mng  is the Mn1 transconductance. 
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Fig.2.4.6.   CMOS differential 
stage with an active IOA



The evident should be noted: the role of noise grows as the differential stage becomes closer 
to the symmetrical state. For the ideal differential stage (it is this case that is considered now) 
the symmetrical state means, in addition, the equality of constant components of A and OUT 
node potentials. The in-phase signal on node  В, caused by  Мр3 transistor noise, varies A 
and OUT node potentials IN THE IN-PHASE MANNER as well, with the root-mean-square 

value  ( ) ( )
( ) ( )

1

3
3

Mn

rmsMpn
rmsMpn g

I
V = . 

Let us compare this value with the root-mean-square noise value from any of the other four 
transistors of the differential stage, for example, from Мр1. It was shown above that (in the 
low-frequency area) the total  noise current  ( ) ( )rmsMpnI 1  flows in the differential  stage output 
circuit. The corresponding root-mean-square voltage ( ) ( )rmsMpnV 1  in OUT node:  ( )( ) ( )( ) OU TrmsMpnrmsMpn RIV 11 =, where OUTR  is 
the output resistance in OUT node.  The OUTR  value is defined by parallel connection of drain 

- source resistances of Мр2 and Mn2 transistors, so it exceeds the 
1

1

Mng  value by the number 

of times equal in the order of magnitude to the intrinsic transistor gain, i.e. by a few tens of 
times.  As  SQUARED noise  currents  and  voltages  are  added  in  the  output  circuit,  it  is 

necessary that  2
OUTR  and  

2
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1
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Mng
 values should be compared which differ by hundreds of 

times! It is obvious that the Мр3 transistor noise can be really neglected.
Thus, we shall consider that the squared spectral density of the noise current in the output 
circuit  is  equal  to the arithmetical  sum of squared spectral  densities of  noise currents of 
FOUR transistors (the same is true for the squared total noise current):
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We shall use the known ratio:    ()( ) () ( )( )
222

rm sINinm irmsn VgI = for the squared noise current ( ) ( )
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where  2
mig  is  the  squared  transconductance  of  the  i-th  transistor,  and  ( ) ( ) ( )

2
rmsINinV  is  the 

squared noise voltage reduced to the input, which represents the noise behavior of the i-th 
transistor. The latter is the sum of two squared noise voltages referred to the transistor input: 

first, it is the resistive channel noise      ( ) ( )
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and, second, flicker noise, or f
1

 of the noise ( ) ( ) fCWL
KV
i

i

rms
f

ni 0

2
1 ≈






  . (4.34)

Here W and L  are effective channel width and length of the i-th transistor, 0C  is the specific 

capacitance of the gate dielectric, f  is a frequency, and iK  is a constant dependent on the 
transistor type and, especially, on the technological process. (We shall remind that (4.33) and 
(4.34) are spectral densities of noises of different nature, and the squared voltage of the total 
noise within the frequency range is equal to the spectral density integral in this range).
The squared spectral density of the noise current is equal to (in view of the differential stage 
symmetry, i.e. identity of all transistor characteristics in pairs Мр1, Мр2, and Mn1, Mn2, there 
is no further name identification of transistor parameters):
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Then, the squared spectral density of the noise current, referred to the input, is equal to:
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It is convenient to represent the transconductance mig  in the form of: 00 I
L
WCg imi µ=

(4.37)
The fact that half of operating current 0I  flows in each of the transistors is taken into account 
here. 
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