The average horizontal electric field across the channel in pinch-off does not depend on the D-S voltage but instead on the voltage across the channel, which is V_{GS} - V_t .

$$\begin{split} I_D = & \frac{\mu_n C_{ox}}{2} \frac{W}{L} \bigg[2 (V_{GS} - V_t) V_{DS} - V_{DS}^2 \bigg] \\ = & \frac{k'}{2} \frac{W}{L} \bigg[2 (V_{GS} - V_t) V_{DS} - V_{DS}^2 \bigg] \end{split} \quad \text{is not}$$

valid if $V_{DS} > V_{GS} - V_t$.

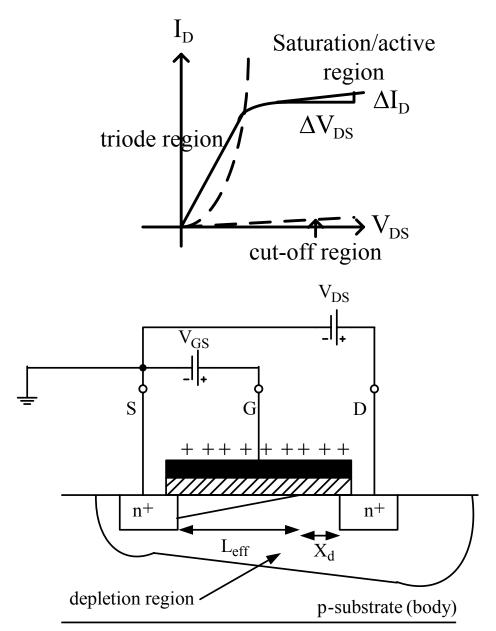
In the pinch-off region where $V_{DS} = V_{GS} - V_t$,

$$I_{D} = \frac{k'}{2} \frac{W}{L} \left[2(V_{GS} - V_{t})(V_{GS} - V_{t}) - (V_{GS} - V_{t})^{2} \right]$$

$$= \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2}$$
(1.157)

Hence, I_D is independent of V_{DS} in the pinch-off region. In practice, however, I_D in the pinch-off region varies slightly as the drain voltage is varied. This effect is due to the presence of a depletion region between the physical pinch-off point in the channel at the D end and the region itself.

Output characteristic of NMOS



 X_d = depletion layer width between physical pinch-off point in the channel at the D-end and the D region itself.

 $L_{eff} = L - X_d = effective channel length (1.158)$

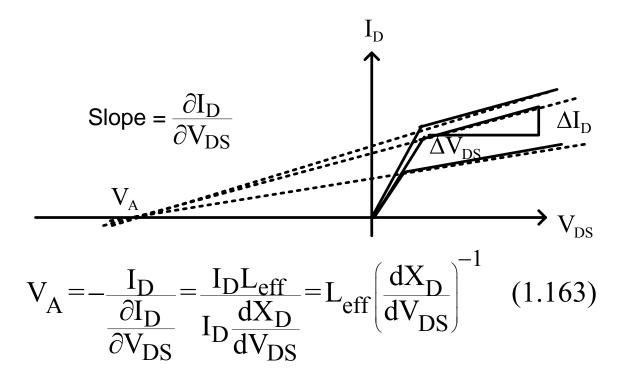
$$I_{D} = \frac{k'}{2} \frac{W}{L_{eff}} (V_{GS} - V_{t})^{2}$$
 (1.159)

Because X_d (and thus L_{eff}) are functions of V_{DS} in the pinch-off region, I_D varies with V_{DS} . This effect is called the channel-length modulation.

$$\begin{split} \frac{\partial I_D}{\partial V_{DS}} &= -\frac{k'}{2} \frac{W}{L_{eff}^2} (V_{GS} - V_t)^2 \frac{dL_{eff}}{dV_{DS}} \\ \frac{\partial I_D}{\partial V_{DS}} &= -\frac{I_D}{L_{eff}} \frac{dL_{eff}}{dV_{DS}} \end{split}$$

From (1.158), i.e. $L_{eff} = L - X_d$,

$$\begin{split} &\frac{dL_{eff}}{dX_{d}} = -1\\ &dL_{eff} = -dX_{d}\\ &\frac{\partial I_{D}}{\partial V_{DS}} = -\frac{I_{D}}{L_{eff}} \left[-\frac{dX_{d}}{dV_{DS}} \right] = \frac{I_{D}}{L_{eff}} \left[\frac{dX_{d}}{dV_{DS}} \right] \end{split}$$



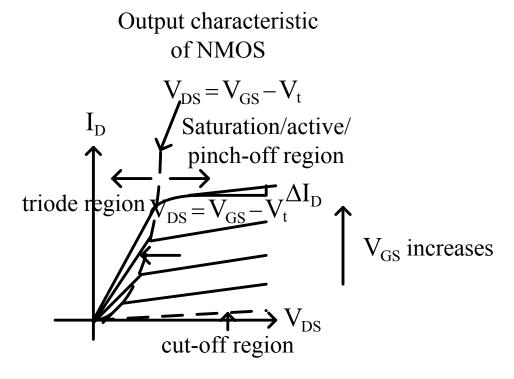
For MOSFETs, a commonly used parameter for the characterization of channel length modulation is:

$$\lambda = \frac{1}{V_A} \tag{1.164}$$

The large-signal properties of the transistor can be approximated by assuming that λ and V_A are constants independent of the bias conditions. If the channel-length modulation effect is included,

$$I_{D} = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2} \left(1 + \frac{V_{DS}}{V_{A}}\right)$$
$$= \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})$$

From (1.163), i.e. $V_A = L_{eff} \left(\frac{dX_D}{dV_{DS}}\right)^{-1}$ and (1.164), i.e. $\lambda = -\frac{1}{V_A}$, $\lambda \propto -\frac{1}{L_{eff}}$. Typical λ is in the range 0.05 V⁻¹ to 0.005 V⁻¹.



 $V_{DS} > V_{GS} - V_t \rightarrow \text{pinch off / saturation region.}$ In saturation region, output characteristics are almost flat. I_D depends mostly on V_{GS} and only to a small extent on V_{DS} .

If $V_{DS} < V_{GS}$ - V_t , the device operates in the ohmic or triode region where the device can be

modeled as a non-linear voltage controlled resistor connected between D and S.

In this region,

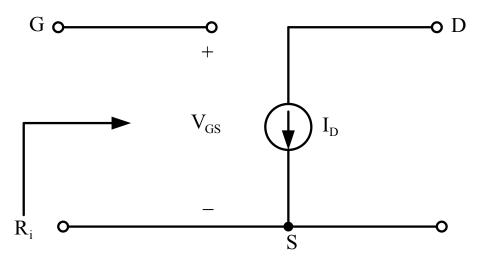
$$I_{D} = \frac{k'}{2} \frac{W}{L} \left[2(V_{GS} - V_{t}) V_{DS} - V_{DS}^{2} \right]$$
 (1.152)

The resistance in this region is non-linear because V_{DS}^2 term in (1.152), causes the resistance to depend on V_{DS} . Since this term is small when V_{DS} is small, the non-linearity is also small:

Triode region is also sometimes called the linear region.

The boundary between the triode and the saturation region occurs when $V_{DS} = (V_{GS} - V_t)$. On this boundary, both (1.152) and (1.157), i.e. $I_D = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_t)^2$, correctly predict I_D .

Large-signal model for NMOS:



In triode region:

$$I_{D} = \frac{k'}{2} \frac{W}{L} \left[2(V_{GS} - V_{t})V_{DS} - V_{DS}^{2} \right]$$

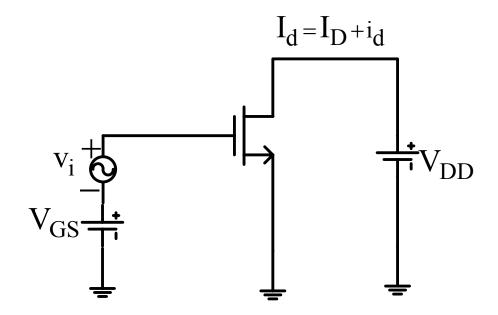
In saturation region:

$$I_D = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_t)^2$$

In saturation region with channel-modulation effect included:

$$I_{D} = \frac{k'}{2} \frac{W}{L_{eff}} (V_{GS} - V_{t})^{2}$$
$$= \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})$$

1.6 Small-signal model of MOSFET



Saturation/active mode of operation:

$$\begin{split} &V_{GS} > V_t \\ &V_{DS} > (V_{GS} \text{ - } V_t) \end{split}$$

 V_{GS} and V_{DD} are the bias voltages, producing I_D . v_i is the small-signal input voltage producing i_d .

1.6.1 Transconductance

$$\begin{split} &I_{D}\!=\!\frac{k'}{2}\!\frac{W}{L}\!\!\left(V_{GS}\!-\!V_{t}\right)^{\!2}\!\!\left(1\!+\!\lambda V_{DS}\right) \\ &g_{m}\!=\!\frac{\partial I_{D}}{\partial V_{GS}}\!=\!\frac{k'}{2}\!\frac{W}{L}2\!\!\left(V_{GS}\!-\!V_{t}\right)\!\!\left(1\!+\!\lambda V_{DS}\right) \\ &g_{m}\!=\!k'\!\frac{W}{L}\!\!\left(V_{GS}\!-\!V_{t}\right)\!\!\left(1\!+\!\lambda V_{DS}\right) \end{split}$$

If
$$\lambda V_{DS} << 1$$
, then $(V_{GS} - V_t) = \sqrt{\frac{I_D}{\frac{k'}{2} \frac{W}{L}}}$ $g_m = k' \frac{W}{L} (V_{GS} - V_t)$
$$= \sqrt{\frac{k'^2 (\frac{W}{L})^2 I_D}{\frac{k'}{2} \frac{W}{L}}}$$

$$= \sqrt{2k' \frac{W}{L} I_D}$$

$$g_{m} = k' \frac{W}{L} (V_{GS} - V_{t})$$

$$I_{D} = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$\begin{split} &g_{m} \!=\! k' \frac{W}{L} \! \! \left(V_{GS} \! - \! V_{t} \right) \\ &I_{D} \! =\! \frac{k'}{2} \frac{W}{L} \! \! \left(V_{GS} \! - \! V_{t} \right)^{2} \end{split}$$

$$V_{OV} = V_{GS} - V_t$$

$$\frac{g_{m}}{I_{D}} = \frac{k' \frac{W}{L}(V_{OV})}{\frac{k'}{2} \frac{W}{L}(V_{OV})^{2}} = \frac{2}{V_{OV}}$$

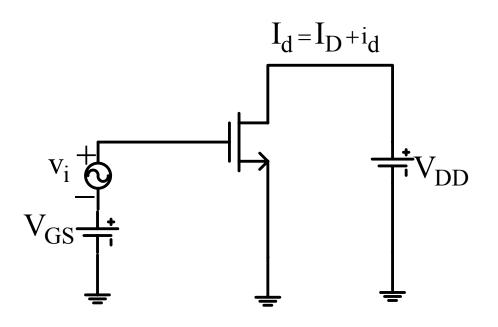
 $V_{OV} \approx \text{several hundred mV}$.

For the BJT:
$$g_{m} = \frac{I_{C}}{V_{t}}$$
$$\frac{g_{m}}{I_{C}} = \frac{1}{V_{t}}$$

$$V_t = 26 \text{ mV}$$

Hence,
$$\frac{g_m}{I_D} < \frac{g_m}{I_C}$$

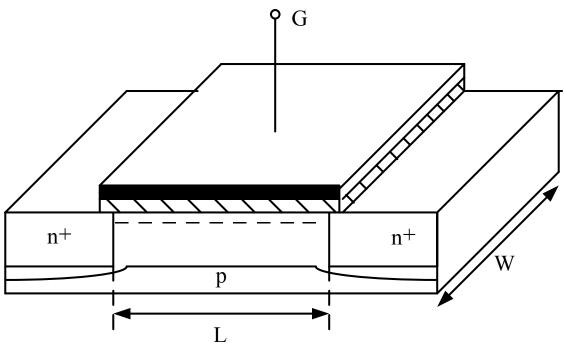
One of the key challenges in MOS analog circuit design is designing high-quality analog circuits with a low transconductance-to-current ratio.



$$\begin{split} &I_{D} \!=\! \frac{k'}{2} \frac{W}{L} \big(V_{GS} \!-\! V_{t} \big)^{2} \\ &I_{d} \!=\! \frac{k'}{2} \frac{W}{L} \big(V_{GS} \!+\! v_{i} \!-\! V_{t} \big)^{2} \\ &=\! \frac{k'}{2} \frac{W}{L} \Big((V_{GS} \!-\! V_{t})^{2} \!+\! 2 \big(V_{GS} \!-\! V_{t} \big) v_{i} \!+\! v_{i}^{2} \Big) \\ &=\! I_{D} \!+\! \frac{k'}{2} \frac{W}{L} \Big(2 \big(V_{GS} \!-\! V_{t} \big) v_{i} \!+\! v_{i}^{2} \Big) \\ &i_{d} \!=\! I_{d} \!-\! I_{D} \!=\! \frac{k'}{2} \frac{W}{L} \Big(2 \big(V_{GS} \!-\! V_{t} \big) v_{i} \!+\! v_{i}^{2} \Big) \\ &=\! k' \frac{W \big(V_{GS} \!-\! V_{t} \big) v_{i}}{L} \Big(1 \!+\! \frac{v_{i}}{2 \big(V_{GS} \!-\! V_{t} \big)} \Big) \\ &g_{m} \quad =\! k' \frac{W}{L} \Big(V_{GS} \!-\! V_{t} \Big) \\ &i_{d} \quad =\! g_{m} v_{i} \Big(1 \!+\! \frac{v_{i}}{2 \big(V_{GS} \!-\! V_{t} \big)} \Big) \end{split}$$

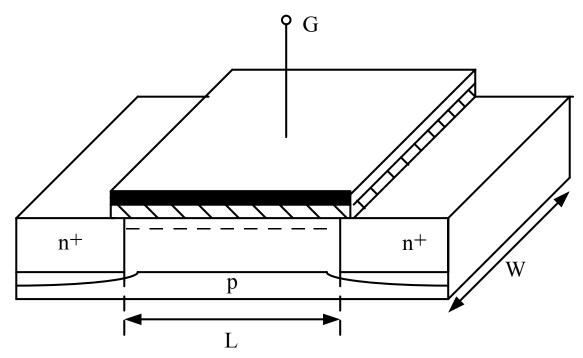
$$\begin{split} &i_d = g_m v_i \Bigg[1 + \frac{v_i}{2(V_{GS} - V_t)} \Bigg] \\ &If \ v_i << V_{GS} - V_t, \ then \ i_d \approx g_m v_i \\ &g_m = k' \frac{W}{L} \Big(V_{GS} - V_t \Big) \ \ can \ \ be \ \ used \ \ for \ \ small-signal \ analysis \ if \ v_i << V_{OV} \ . \end{split}$$

1.6.2 Intrinsic Gate-Source and Gate-Drain Capacitance



 C_{ox} = oxide capacitance per unit area from G to channel

Hence, total capacitance under the G is C_{ox}WL.



In the <u>triode region</u> of device operation, the channel exists continuously from S to D. The G-channel capacitance is usually lumped into two equal parts at the D and S,

$$C_{gs} = C_{gd} = (1/2)C_{ox}WL$$

In the <u>saturation or active region</u>, the channel pinches off before reaching the D. The D voltage has little influence on either the channel or the G charge.

$$C_{gd} = 0$$

$$C_{gs} = (2/3)C_{ox}WL$$

1.6.3 Input resistance



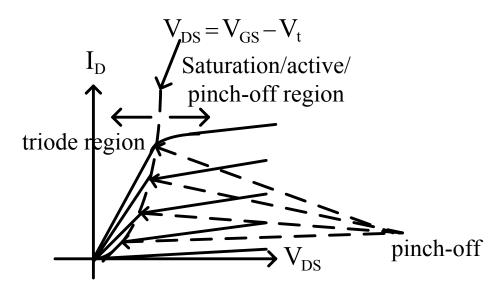
G is insulated from the channel by the SiO_2 . At low-frequencies, G current is essentially 0 and input resistance is essentially ∞ .

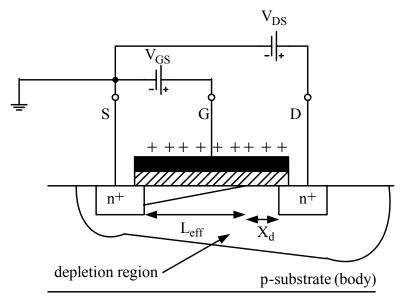
Output characteristic

1.6.4 Output resistance

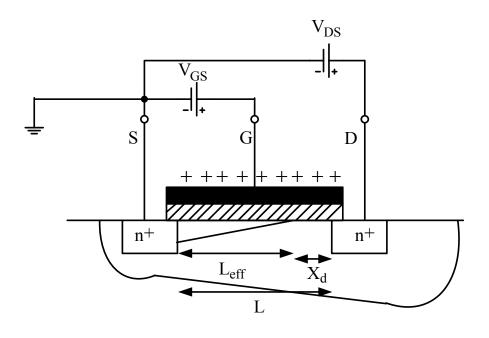
of NMOS $V_{DS} = V_{GS} - V_{t}$ $V_{DS} = V_{GS} - V_{t}$ Saturation/active/ pinch-off region $V_{DS} = V_{DS} - V_{t}$ pinch-off

Output characteristic of NMOS





Increasing V_{DS} will increase the width of the depletion region around the D and reduces the effective channel length of the device in the saturation or active region. This effect is the channel length modulation and causes I_D to increase when V_{DS} is increased.



$$\Delta I_{D} = \frac{\partial \overline{I_{D}}}{\partial V_{DS}} \Delta V_{DS}$$

 ΔI_D = change in the D current

 ΔV_{DS} = change in the D-S voltage

$$L_{eff} = L - X_d$$

$$\frac{\partial I_{D}}{\partial V_{DS}} = \frac{I_{D}}{L_{eff}} \left[\frac{dX_{d}}{dV_{DS}} \right]$$

$$V_{A} = L_{eff} \left(\frac{dX_{D}}{dV_{DS}} \right)^{-1}$$

Hence,
$$\frac{\partial I_D}{\partial V_{DS}} = \frac{I_D}{V_A}$$

 $\lambda = \frac{1}{V_A}$ where V_A is the Early voltage.

$$\frac{\Delta I_D}{\Delta V_{DS}} = \frac{\partial I_D}{\partial V_{DS}} = \frac{I_D}{V_A} = \lambda I_D = \frac{1}{r_o}$$

$$\frac{\Delta I_D}{\Delta V_{DS}} = \frac{\partial I_D}{\partial V_{DS}} = \frac{I_D}{V_A} = \lambda I_D = \frac{1}{r_o}$$

where:

 λ = channel length modulation parameter

 r_o = small-signal output resistance of the transistor

 I_D = drain current without channel length modulation

$$= \frac{k'}{2} \frac{W}{L} (V_{GS} - V_t)^2$$