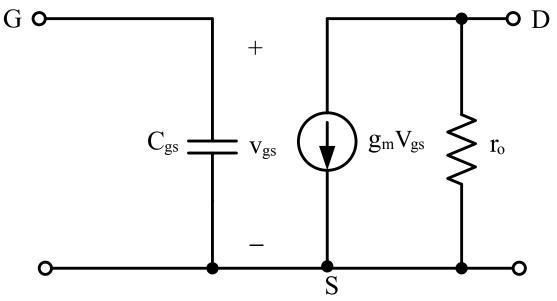
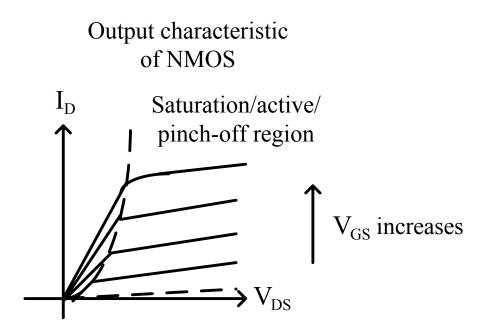
1.6.5 Basic small-signal model of the MOS transistor



This model is for the transistor in the sat/active region. This model is called the hybrid- π model.

1.6.6 Body transconductance

 I_D is a function of both V_{GS} and V_{BS} . V_{GS} controls the vertical electric field which controls the channel conductivity and, hence, I_D . V_{BS} changes the threshold, which changes I_D when V_{GS} is fixed. This effect resulted from the influence of the substrate acting as a second gate and is called the body effect. The body of a MOSFET is usually connected to a constant power supply voltage which is a small signal or ac ground.



In the sat./active region, the V_{DS} has no influence on the I_D (if the channel modulation effect is not considered). The I_D is influenced only by the V_{GS}. V_{GS} \uparrow I_D \uparrow . However, when V_{SB} \neq 0, V_t will change correspondingly. I_D will change too. Hence, the term "second gate" for the substrate if body effect is considered.

$$I_{D} = \frac{k'}{2} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})$$
(1.157)

The transconductance from the body or second gate:

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}} = -k' \frac{W}{L} (V_{GS} - V_t) (1 + \lambda V_{DS}) \frac{\partial V_t}{\partial V_{BS}}$$

$$V_{t} = V_{t0} + \gamma \left(\sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right)$$

$$\frac{\partial V_{t}}{\partial V_{BS}} = -\frac{1}{2} \gamma \left(2\phi_{f} + V_{SB} \right)^{-1/2} = -\chi$$
(1.140)

 χ = rate of change of threshold voltage with body bias voltage.

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}} = -k' \frac{W}{L} (V_{GS} - V_t) (1 + \lambda V_{DS}) \frac{\partial V_t}{\partial V_{BS}}$$

$$g_{mb} = \frac{k' \frac{W}{L} \gamma (V_{GS} - V_t) (1 + \lambda V_{DS})}{\left[2\sqrt{(2\phi_f + V_{SB})} \right]}$$
Since $g_m = k' \frac{W}{L} (V_{GS} - V_t) (1 + \lambda V_{DS})$, then
$$\frac{g_{mb}}{g_m} = \frac{\gamma}{\left[2\sqrt{(2\phi_f + V_{SB})} \right]} = \chi \text{ where}$$

$$\gamma = \frac{1}{C_{ox}} \sqrt{2q\epsilon N_A}$$

$$\phi_f = \frac{kT}{q} \ln \left[\frac{N_A}{n_i} \right]$$

$$\chi = 0.1 \rightarrow 0.3 \text{ (typical)}$$

Hence, transconductance from the main gate (g_m) is typically 3 to 10 times larger than the transconductance from the body or the 2nd gate (g_{mb}) .

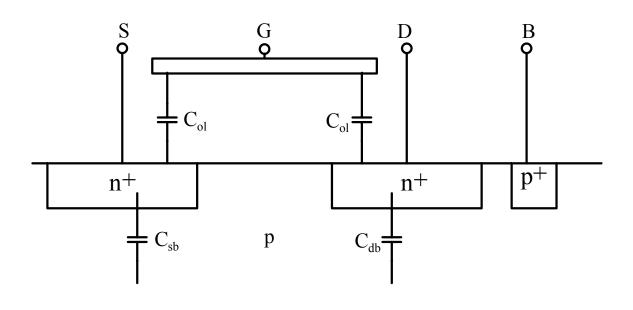
If
$$\lambda V_{DS} \ll 1$$
, then

$$g_{mb} = \frac{k' \frac{W}{L} \gamma (V_{GS} - V_t)}{\left[2 \sqrt{\left(2 \phi_f + V_{SB}\right)}\right]}$$

$$\begin{split} \mathbf{I}_{\mathrm{D}} &= \frac{\mathbf{k}' \frac{\mathbf{W}}{\mathbf{L}} \left(\mathbf{V}_{\mathrm{GS}} - \mathbf{V}_{\mathrm{t}} \right)^{2} \text{ i.e } \sqrt{\frac{2L}{\mathbf{k}' \mathbf{W}}} \mathbf{I}_{\mathrm{D}} = \left(\mathbf{V}_{\mathrm{GS}} - \mathbf{V}_{\mathrm{t}} \right) \\ \mathbf{g}_{\mathrm{mb}} &= \frac{\mathbf{k}' \frac{\mathbf{W}}{\mathbf{L}} \gamma \sqrt{\frac{2L}{\mathbf{k}' \mathbf{W}}} \mathbf{I}_{\mathrm{D}}}{\left[2 \sqrt{\left(2 \phi_{\mathrm{f}} + \mathbf{V}_{\mathrm{SB}} \right)} \right]} \\ &= \gamma \sqrt{\frac{\mathbf{k}' \left(\mathbf{W}/L \right) \mathbf{I}_{\mathrm{D}}}{2 \left(2 \phi_{\mathrm{f}} + \mathbf{V}_{\mathrm{SB}} \right)}} \end{split}$$

1.6.7 Parasitic elements in the smallsignal model

 g_m , C_{gs} , C_{gd} , r_o and g_{mb} arise directly from essential processes in the device. Technological limitations in the fabrication introduce a number of parasitic elements that must be added to the equivalent circuit. All p-n junctions should be rb during normal operation. Each junction exhibits a voltagedependent parasitic capacitance associated with its depletion region.

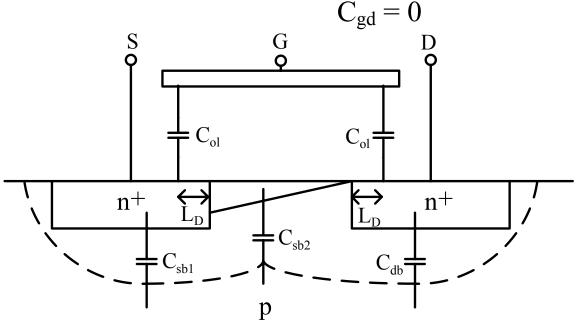


$$C_{sb} = \frac{C_{sb0}}{\left(1 + \frac{V_{SB}}{\Psi_0}\right)^{\frac{1}{2}}}$$
$$C_{db} = \frac{C_{db0}}{\left(1 + \frac{V_{DB}}{\Psi_0}\right)^{\frac{1}{2}}}$$

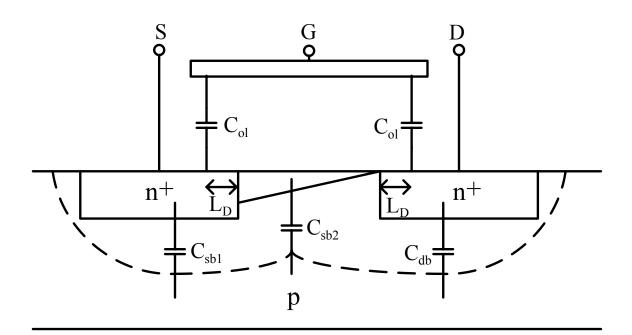
Since the channel is attached to the S in the saturation or active region, C_{sb} also includes depletion-region capacitance from the induced channel to the body.

In triode region: $C_{gs} = C_{gd} = (1/2)C_{ox}WL$

In saturation/ active region: $C_{gs} = (2/3)C_{ox}WL$



In practice, the C_{gs} and C_{gd} values are increased due to the parasitic oxide capacitances arising from the gate overlap of the S and D regions. These capacitances are represented by C_{ol} .



1. Cut-off operation:

No channel, hence, $C_{gs} = C_{gd} = C_{ox}WL_d = C_{ol}$

2. Triode/linear operation:

$$C_{gs} = C_{gd} = (1/2)C_{ox}WL + C_{ox}WL_d$$

3. Sat./active region:

$$C_{gs} = (2/3)C_{ox}WL + C_{ox}WL_d$$

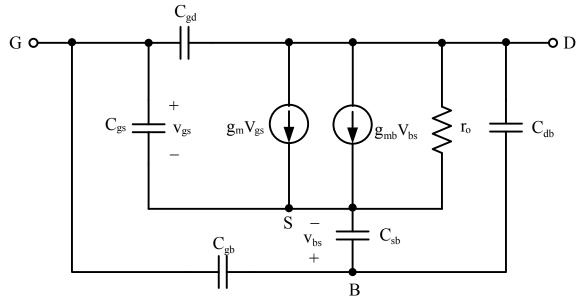
 $C_{gd} = C_{ox}W L_d$

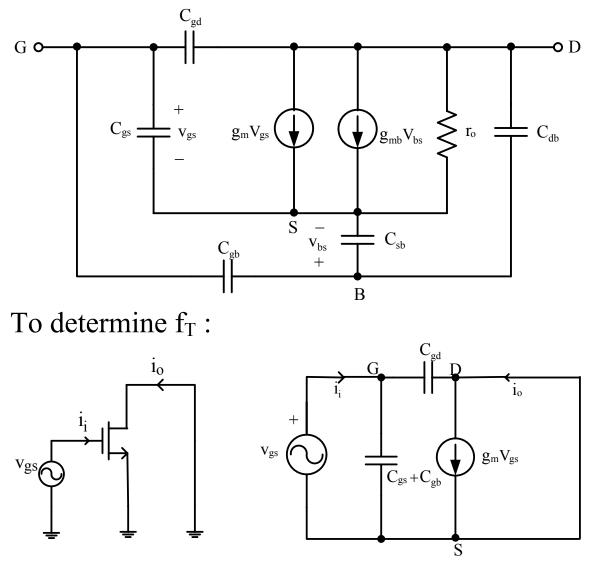
 C_{gb} = parasitic oxide capacitance between Gchannel material and the substrate outside the active-device area.

This capacitance is independent of the G-body voltage and models coupling from polysilicon and metal interconnects to the underlying substrate. This capacitor should be taken into account when simulating and calculating high-frequency circuit and device performance. Typical values depend on the oxide thickness. For SiO₂ thickness of 100Å, $C_{gb} = 3.45$ fF/µm².

1.6.8 MOS transistor frequency response

Small-signal MOSFET equivalent circuit:

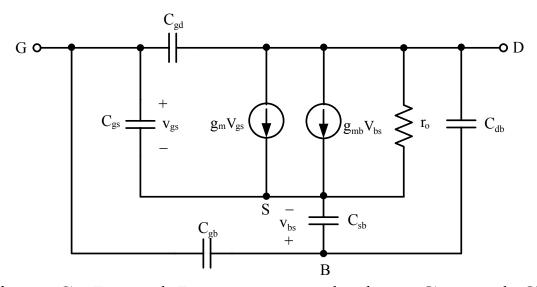




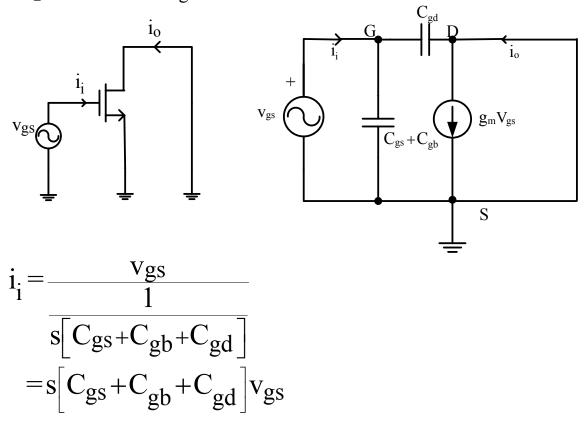
 f_T = the frequency where the magnitude of the s/c, CS current gain falls to unity.

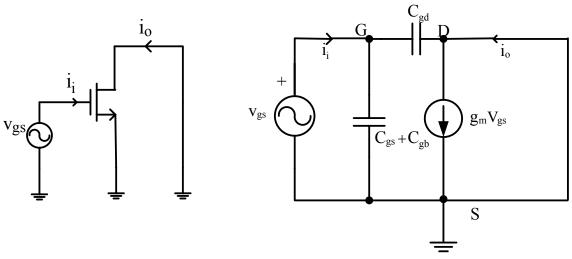
Although the dc $I_G = 0$, the high frequency behavior of the MOSFET is controlled by the capacitive elements in the small-signal model which cause I_G to increase as frequency increases.

Since $v_{sb} = v_{ds} = 0$, then $g_{mb}v_{bs}$ and r_o have no effect and are ignored as $g_{mb}v_{bs} = 0$ and r_o is s/c.



Since S, B and D are ac gnd, then C_{sb} and C_{db} have no effect on the calculations. C_{gs} is also in parallel with C_{gb} because of the same reason. Since D and S are both at ac gnd, then $C_{gs} + C_{gb}$ is parallel to C_{gd} .





If the current fed forward through C_{gd} is neglected, then

$$\begin{split} &i_{o} \approx g_{m} v_{gs} \\ &i_{i} = s \Big[C_{gs} + C_{gb} + C_{gd} \Big] v_{gs} \\ &\frac{i_{o}}{i_{i}} = \frac{gm}{s \Big[C_{gs} + C_{gb} + C_{gd} \Big]} \\ &\frac{i_{o}}{i_{i}} (j\omega) = \frac{gm}{j\omega \Big[C_{gs} + C_{gb} + C_{gd} \Big]} \end{split}$$

When the magnitude of the small-signal current gain = 1,

$$\left|\frac{\dot{i}_{0}}{\dot{i}_{i}}\right| = \frac{g_{m}}{\omega \left[C_{gs} + C_{gb} + C_{gd}\right]} = 1$$
$$\omega = \frac{g_{m}}{\left[C_{gs} + C_{gb} + C_{gd}\right]} = \omega_{T}$$

$$\omega = \frac{g_{m}}{\left[C_{gs} + C_{gb} + C_{gd}\right]} = \omega_{T}$$
$$f_{T} = \frac{g_{m}}{2\pi \left[C_{gs} + C_{gb} + C_{gd}\right]}$$

If
$$C_{gs} >> C_{gb} + C_{gd}$$
, then

$$f_T = \frac{g_m}{2\pi C_{gs}}$$

From
$$C_{gs} = \frac{2}{3}WLC_{ox}$$
 and $g_m = k'\frac{W}{L}(V_{GS} - V_t)$,

$$f_{T} = \frac{\mu_{n}C_{ox}\frac{W}{L}(V_{GS}-V_{t})}{2\pi\left(\frac{2}{3}\right)WLC_{ox}}$$
$$= \frac{1.5\mu_{n}(V_{GS}-V_{t})}{2\pi L^{2}}$$

In order to increase f_T , V_{OV} has to be in the order of hundreds mV. With the advancement in integrated circuit technology (where transistor becomes smaller and therefore $L\downarrow$), $f_T\uparrow$.

$$\tau_{\rm T} = 1 / \omega_{\rm T}$$

For a BJT,

$$\tau_T = \tau_F + \frac{C_{je}}{g_m} + \frac{C_{\mu}}{g_m}$$
 where
 $\tau_F = B$ transit time in the forward direction.
 $C_{\mu} = B-C$ parasitic capacitance
 $C_{je} = B-E$ parasitic capacitance

When the parasitic depletion-layer capacitance is neglected, the BJT has $\tau_{F} \gg \frac{C_{je}}{g_{m}} + \frac{C_{\mu}}{g_{m}}$. Hence, $\tau_{T} \approx \tau_{F}$ $f_{T} = \frac{1}{2\pi\tau_{F}}$ From $\tau_{F} = \frac{W_{B}^{2}}{2D_{n}}$ (1.99) $f_{T} = \frac{2D_{n}}{2\pi W_{B}^{2}}$

From Einstein relationship, $V_T = \frac{D_n}{\mu_n}$ $f_{T_BJT} = 2\frac{\mu_n V_T}{2\pi W_B^2}$

$$f_{T_BJT} = 2 \frac{\mu_n V_T}{2\pi W_B^2}$$
$$f_{T_MOS} = \frac{1.5\mu_n (V_{GS} - V_t)}{2\pi L^2}$$

In both the equations above,

- 1. f_T increases as the inverse square of the critical device dimension across which carriers are in transit decreases.
- 2. $V_T = 26 \text{ mV}$ is fixed for BJT but f_T of a MOSFET can be increased by operating at high values of V_{OV} .
- W_B (the B width) is a vertical dimension determined by diffusions or implants and typically be made much smaller than L of MOSFET which depends on surface geometry and photolithographic processes. BJT generally has higher f_T than MOSFET made with comparable processing.