EEE130 Digital Electronics I Lecture #3 - Logic Gates -

By Dr. Shahrel A. Suandi

Topics to be discussed

- 3-1 The Inverter
- 3-2 The AND Gate
- 3-3 The OR Gate
- 3-4 The NAND Gate
- 3-5 The NOR Gate
- 3-6 The Exclusive-OR and Exclusive-NOR Gates

3-1 The Inverter

(a) Distinctive shape symbols with negation indicators

- (b) Rectangular outline symbols with polarity indicators
- Be careful of the bubble (" ° ") usage to show active-LOW
- The triangle symbol in (b) indicates inversion

Inverter Truth Table

3-2 The AND Gate

- Significant about AND gate:
 - It produces a HIGH output only when all of the
 - inputs are HIGH
- The truth table:

Inp	uts	Outputs
0	0	0
0	1	0
1	0	0
1	1	1

(a) Distinctive shape

(b) Rectangular outline with the AND (&) qualifying symbol

More about AND gate

- Combination can be made from AND gate Depending on the input variables ${\cal N}=2^n$
 - where n is the total of inputs
- Operation with waveform inputs

 If two waveforms, A and B, are applied to the AND gate inputs, what is the resulting output waveform?

A and *B* are both HIGH during these four time intervals. Therefore *X* is HIGH.

 For the two input waveforms, A and B, show the output waveform with its proper relation to the inputs.

Logic expression for AND gate

 The logical AND function of two variables is represented mathematically either by placing a dot between the two variable, or by writing the adjacent letter without the dot

-
$$A \cdot B$$
 or AB

Boolean multiplication = AND function

Advance for AND gate

Applications – A seat belt alarm system

3-3 The OR Gate

- Significant about OR gate:
 - It produces a HIGH on the output when <u>any of</u>
 <u>the inputs is HIGH</u>

 The truth table: 	Inputs		Outputs
	0	0	0
	0	1	1
	1	0	1
$A = \sum_{B} - X \qquad B = \sum_{A} X$	1	1	1

(a) Distinctive shape

 (b) Rectangular outline with the OR (≥ 1) qualifying symbol

More about OR gate(1)

Operation with waveform inputs

More about OR gate(2)

• Logic expression for an OR gate X = A + B

 If the two input waveforms, A and B, are applied to the OR gate, what is the resulting output waveform?

 For the two input waveforms, A and B, show the output waveform with its proper relation to the inputs

 For the 3-input OR gate, determine the output waveform in proper time relation to the inputs

An application

Intrusion detection and alarm system

3-4 The NAND Gate

 It produces a LOW output only when all the inputs are HIGH

$$\begin{array}{c} A \\ B \end{array} \longrightarrow X \end{array} \equiv \begin{array}{c} A \\ B \end{array} \longrightarrow Y \end{array}$$

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline, 2-input NAND gate with polarity indicator

Logic expression: $X = \overline{AB}$ $= \bigcirc_{\text{NAND}} = \bigcirc_{\text{Negative-OR}}$

Inputs		Outputs
0	0	1
0	1	1
1	0	1
1	1	0

 If the two waveforms, A and B, are applied to the NAND gate inputs, determine the resulting output waveform

Example 3-13 – 4-input NAND operating as negative-OR

3-5 The NOR Gate

 It produces a LOW output when any of its inputs is HIGH

(a) Distinctive shape, 2-input NOR gate and its NOT/OR equivalent

(b) Rectangular outline, 2-input NOR gate with polarity indicator

Inp	uts	Outputs
0	0	1
0	1	0
1	0	0
1	1	0

 If the two waveforms, A and B, are applied to a NOR gate, what is the resulting output waveform?

 Show the output waveform for the 3-input NOR gate with the proper time relation to the inputs.

Example 3-18 – 4-input NOR gate operating on negative-AND gate

3-6(1) The Exclusive-OR

- The output is HIGH only when the two inputs are at opposite logic levels (has only two inputs)
- Exclusive OR is written as XOR and the symbols are given below

$$A \longrightarrow X$$

(a) Distinctive shape

(b) Rectangular outline with the XOR

Inp	uts	Outputs
0	0	0
0	1	1
1	0	1
1	1	0

3-6(2) The Exclusive-NOR Gates

- The output is LOW only when the two inputs are at opposite logic levels (has only two inputs)
- The exclusive-NOR gate is written as XNOR and the symbol is written below

$$A \xrightarrow{A} \longrightarrow X$$

(a) Distinctive shape

(b) Rectangular outline

Inputs		Outputs
0	0	1
0	1	0
1	0	0
1	1	1

 Determine the output waveforms for the XOR gate and for the XNOR gate, given the following inputs.

Application of XOR – as a two-bit adder

- From Chapter 2, we know that the basic rules for binary addition are: 0+0=0, 0+1=1, 0+1=1 and 1+1=10. In the last rule, if we need to discard the second bit (1), we can use XOR
- Why??
 - Please refer to the truth table on the right

Inpu	ut bits	Output (sum)
A	В	Σ
0	0	0
0	1	1
1	0	1
1	1	0 (without 1 carry)
))	

Summary of Logic Gates

Note: Active states are shown in yellow.