EEE130 Digital Electronics I Lecture \#3
 - Logic Gates -

By Dr. Shahrel A. Suandi

Topics to be discussed

- 3-1 The Inverter
- 3-2 The AND Gate
- 3-3 The OR Gate
- 3-4 The NAND Gate
- 3-5 The NOR Gate
- 3-6 The Exclusive-OR and Exclusive-NOR Gates

3-1 The Inverter

(a) Distinctive shape symbols with negation indicators

(b) Rectangular outline symbols with polarity indicators

- Be careful of the bubble (" ${ }^{\text {" ") usage - to show }}$ active-LOW
- The triangle symbol in (b) indicates inversion

Inverter Truth Table

INPUT	OUTPUT
0	1
1	0

Input pulse

Output pulse

3-2 The AND Gate

- Significant about AND gate:
- It produces a HIGH output only when all of the inputs are HIGH
- The truth table:

(a) Distinctive shape

(b) Rectangular outline with the AND (\&) qualifying symbol

More about AND gate

- Combination can be made from AND gate
- Depending on the input variables $N=2^{n}$ where n is the total of inputs
- Operation with waveform inputs

Example 3-3

- If two waveforms, A and B, are applied to the AND gate inputs, what is the resulting output waveform?

A and B are both HIGH during these four time intervals.
Therefore X is HIGH.

Example 3-4

- For the two input waveforms, A and B, show the output waveform with its proper relation to the inputs.

Logic expression for AND gate

- The logical AND function of two variables is represented mathematically either by placing a dot between the two variable, or by writing the adjacent letter without the dot

$$
-A \cdot B \text { or } A B
$$

- Boolean multiplication = AND function

Advance for AND gate

Applications - the AND gate as an enable/inhibit device

Applications - A seat belt alarm system

3-3 The OR Gate

- Significant about OR gate:
- It produces a HIGH on the output when any of the inputs is HIGH
- The truth table:

(a) Distinctive shape

Inputs		Outputs
0	0	0
0	1	1
1	0	1
1	1	1

(b) Rectangular outline with the OR (≥ 1) qualifying symbol

More about OR gate(1)

- Operation with waveform inputs

More about OR gate(2)

- Logic expression for an OR gate

$$
X=A+B
$$

Example 3-6

- If the two input waveforms, A and B, are applied to the OR gate, what is the resulting output waveform?

Example 3-7

- For the two input waveforms, A and B, show the output waveform with its proper relation to the inputs

Example 3-8

- For the 3-input OR gate, determine the output waveform in proper time relation to the inputs

An application

- Intrusion detection and alarm system

3-4 The NAND Gate

- It produces a LOW output only when all the inputs are HIGH

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline, 2-input NAND gate with polarity indicator

Logic expression:

$$
X=\overline{A B}
$$

Inputs		Outputs
0	0	1
0	1	1
1	0	1
1	1	0

Example 3-9

- If the two waveforms, A and B, are applied to the NAND gate inputs, determine the resulting output waveform

A and B are both HIGH during these
four time intervals. Therefore X is LOW.

Example 3-13 - 4-input NAND operating as negative-OR

\sum_{i}^{0}	Input				Out put
	A	B	C	D	X
	1	1	1	1	0
	0	1	1	1	1
	1	1	1	1	0
	1	0	1	1	1

3-5 The NOR Gate

- It produces a LOW output when any of its inputs is HIGH

(a) Distinctive shape, 2-input NOR gate and its NOT/OR equivalent

Logic expression:

$$
X=\overline{A+B}
$$

(b) Rectangular outline, 2-input NOR gate with polarity indicator

Inputs		Outputs
0	0	1
0	1	0
1	0	0
1	1	0

Example 3-14

- If the two waveforms, A and B, are applied to a NOR gate, what is the resulting output waveform?

Example 3-15

- Show the output waveform for the 3-input NOR gate with the proper time relation to the inputs.

Example 3-18 - 4-input NOR gate operating on negative-AND gate

3-6(1) The Exclusive-OR

- The output is HIGH only when the two inputs are at opposite logic levels (has only two inputs)
- Exclusive OR is written as XOR and the symbols are given below

(a) Distinctive shape

(b) Rectangular outline with the XOR

Inputs		Outputs
0	0	0
0	1	1
1	0	1
1	1	0

3-6(2) The Exclusive-NOR Gates

- The output is LOW only when the two inputs are at opposite logic levels (has only two inputs)
- The exclusive-NOR gate is written as XNOR and the symbol is written below

(a) Distinctive shape

(b) Rectangular outline

Inputs		Outputs
0	0	1
0	1	0
1	0	0
1	1	1

Example 3-20

- Determine the output waveforms for the XOR gate and for the XNOR gate, given the following inputs.

Application of XOR - as a two-bit adder

- From Chapter 2, we know that the basic rules for binary addition are: $0+0=0,0+1=1$, $0+1=1$ and $1+1=10$. In the last rule, if we need to discard the second bit (1), we can use XOR
- Why??
- Please refer to the truth table on the right

Summary of Logic Gates

Note: Active states are shown in yellow.

