EEE140 Digital Electronics I Lecture \#5
 - Combinational Logic Analysis -

By Dr. Shahrel A. Suandi

What will be covered in this topic?

- 5-1 Basic Combinational Logic Circuits
- 5-2 Implementing Combinational Logic
- 5-3 The Universal Property of NAND and NOR Gates
- 5-4 Combinational Logic Using NAND and NOR Gates
- 5-5 Logic Circuit Operation With Pulse Waveform Inputs
- 5-6 Combinational Logic with VHDL
- 5-7 Troubleshooting

Introduction

- So far we have learnt about logic circuits as independent circuit. From this chapter we will learn about logic gates which have been connected together to produce a specified output for certain specified combinations of input variables, with no storage involved - the resulting circuit is in the category of combinational logic
- Important sections to know:
- SOP and POS expressions

5-1 Basic Combinational Logic Circuits

- AND-OR logic (remember SOP to get a clearer image of this)
- Details on this type of logic are given below. We need to know the symbol and how it is used/described

(a) Logic diagram (ANSI standard distinctive shape symbols)

(b) ANSI standard rectangular outline symbol

How to describe the AND-OR logic?

- From the figure (Figure 5-1), we may say something like this:
- For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and B are HIGH(1) or both input C and input D are HIGH(1)
- Please refer Table 5-1

Example 5-1

AND-OR-Invert Logic

- A complemented version of AND-OR Logic
- If AND-OR logic implements SOP, then AND-OR-Invert implements POS
- The details of this are given below:

(a)

Example 5-2

Exclusive-OR Logic

- This type of logic is actually a combination of 2 ANDs, 1 OR and 2 inverters

(a) Logic diagram

(b) ANSI distinctive shape symbol

(c) ANSI rectangular outline symbol
- The output expression is $X=A \bar{B}+\bar{A} B$
- Using the special operator symbol for XOR

$$
X=A \oplus B
$$

Exclusive-NOR Logic

- This is the complement of XOR. A combination of 2 ANDs, 1 OR and 2 inverters (Notice that the quantity of logic gates is the same)
- Usually written as XNOR
- The details:

(a) $X=\overline{A \bar{B}+\bar{A} B}$
(b) $X=\bar{A} \bar{B}+A B$

XOR and XNOR logic circuits

$$
X N O R
$$

5-2 Implementing Combinational Logic

- From a Boolean Expression to a Logic Circuit
- Examine the expression given. In our book, the two terms are summed after being multiplied

$$
X=A B+C D E
$$

- The logic circuit is

5-2 Implementing Combinational Logic (Cnt'd 1)

- Let's try to do this

$$
X=A B(C \bar{D}+E F)
$$

- What will we get is something like this

5-2 Implementing Combinational

Logic (Cnt’d 2)

- Problem: propagation delay from the input to the output
- Remedy: usually, we will reduce the expression to SOP form (in the book example, we straight away get the SOP form from the given expression)

$$
\begin{aligned}
X & =A B(C \bar{D}+E F) \\
& =A B C \bar{D}+A B E F
\end{aligned}
$$

Finally, we get this logic circuit

