EEE130 Digital Electronics I Lecture #6

- Functions of Combinational Logic -

By Dr. Shahrel A. Suandi

Topics to be covered

- 6-1 Basic Adders
- 6-2 Parallel Binary Adders
- 6-3 Ripple Carry versus Look-Ahead Carry Adders
- 6-4 Comparators
- 6-5 Decoders
- 6-6 Encoders
- 6-7 Code Converters
- 6-8 Multiplexers (Data Selectors)
- 6-9 Demultiplexers
- 6-10 Parity Generator/Checkers

6-1 Basic Adders

- There are full-adder and half-adder
- Half-adder:
 - The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs, a sum bit and a carry bit
 - Similar to XOR
- Full-adder:
 - The full-adder accepts two input bits and an input carry and generates a sum output and an output carry

Symbols used for adders

Half-adder

		Σ	
Input { bits {	A	Σ	—— Sum
bits	 В	$C_{ m out}$	—— Output carry
Input carry	$C_{\rm in}$	Cout	

Full-adder

Α	В	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	Cin	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

6-2 Parallel Binary Adders

- More than two full-adders can be connected to form parallel binary adders
- How they are arranged?
 - Parallel/cascade by connecting C_{out} from the lower bit to C_{in} in a higher bit
- Why they are needed?
 - To add binary numbers more than 2 bits; ie. For 2-bit numbers, 2 adders are needed; 4-bit numbers, 4 adders are needed, and so on
- What important things that we should remember?
 - A full adder can be used instead of half adder the LSB concerned full adder must be connected to ground
 - Let's see everything graphically...

Block diagram of 2-bit and 4-bit parallel adders

(a) Block diagram

(b) Logic symbol

74LS283 4-bit parallel adder

1	2	Pin	diagram	of	741	5283
٦	u	T 111	ulusiulli	OI	/ 11	10200

(b) 74LS283 logic symbol

GND

		Limits			
Symbol	Parameter	Min	Тур	Max	Unit
$t_{ m PLH} \ t_{ m PHL}$	Propagation delay, C_0 input to any Σ output		16 15	24 24	ns
$t_{ m PLH}$ $t_{ m PHL}$	Propagation delay, any A or B input to Σ outputs		15 15	24 24	ns
$t_{ m PLH} \ t_{ m PHL}$	Propagation delay, C_0 input to C_4 output		11 11	17 22	ns
$t_{ m PLH}$ $t_{ m PHL}$	Propagation delay, any A or B input to C_4 output		11 12	17 17	ns

Adder expansion

(a) Cascading of two 4-bit adders to form an 8-bit adder

(b) Cascading of four 4-bit adders to form a 16-bit adder

6-3 Ripple Carry Versus Look-Ahead Carry Adders

- There are two categories for parallel adders:
 - Ripple carry
 - Look-ahead carry
- These two categories are fixed by evaluating how <u>each internal carries are handled from</u> <u>stage to stage</u>
- The difference speed of adding numbers
 - Look-ahead carry adder is much faster than ripple carry adder

Ripple carry adder

- A ripple carry adder is one in which the carry output of each full-adder is connected to the carry input of the next higher-order stage
- Why delayed/slow?
 - The sum and the output carry of any stage cannot be produced until the input carry occurs

Look-ahead carry adder

 The look-ahead carry adder anticipates the output carry of each stage, and based on the inputs, produces the output carry by either carry generation or carry propagation

6-4 Comparators

 The function is to compare the magnitudes of two binary quantities to determine the relationship of those quantities

Equality

General format: Binary number $A \rightarrow A_1 A_0$ Binary number $B \rightarrow B_1 B_0$

Inequality

A 4-bit Comparator (74HC85)

How to connect two 74HS85s

6-5 Decoders

- A decoder is a digital circuit that detects the presence of a specified combination of bits (code) on its inputs and indicates the presence of that code by a specified output level
- Tips to remember when to use decoders:
 - Code (BCD, etc.) → Decimal numbers, etc.

A 1-of-16 Decoder (74HC154)

6-6 Encoders

- An encoder is a combinational logic circuit that essentially performs a "reverse" decoder function
- Tips to remember when to use encoders
 - Decimal/octal → BCD or binary

A Decimal-to-BCD Encoder (74HC147)

6-8 Multiplexers

- A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination
- Also known as "data selector"

A1-of-4 data selector/multiplexer ()

A quadruple 2-input data selector/multiplexer (74HC157)

6-9 Demultiplexers

- In contrast to Multiplexers, demultiplexers (DEMUX) is a device used to distribute a digital information from one line to multiple number of output lines
- Also known as "data distributor"

The 74HC154 decoder used as a demultiplexer

6-10 Parity Generators/Checkers

- Used to check errors while digital codes are transferred from one point to another within a digital system
- Please check previous lecture notes for more details on how parity is checked

Wish you all... ALL THE BEST IN YOUR FINAL EXAM!!!

Thank you.