As the technology for the power semiconductor devices and integrated circuit develops, the potential for applications of power electronics become wider. There are already many power semiconductor devices that are commercially available, however, the development in this direction is continuing.

The power semiconductor devices or power electronic converter fall generally into six categories:
- AC to DC Converter (Controlled Rectifier)
- DC to DC Converter (DC Chopper)
- AC to AC Converter (AC voltage regulator)
- DC to AC Converter (Inverter)
- Static Switches

The design of power electronics converter circuits requires design the power and control circuits.

The voltage and current harmonics that are generated by the power converters can be reduced or minimized with a proper choice of the control strategy.
Power Electronics Application

Power Electronics defined as the application of solid-state (devices) electronics for the control and conversion of electric power.

Power electronics have already found an important place in modern technology and are now used in a great variety of high-power product, including heat controls, light controls, electric motor control, power supplies, vehicle propulsion system and high voltage direct current (HVDC) systems.
Figure of Power Electronic devices application

Sources of M. Rashid” Power Electronics Circuit, Device and Application, 2006
POWER ELECTRONIC SWITCHING DEVICES

1. Uncontrolled turn on and off (Power Diode)
2. Controlled turn on uncontrolled turn off (Thyristors)
3. Controlled turn on and off characteristic (Power Transistor, BJT, MOSFET, GTO, IGBT)
4. Continuous gate signal requirement (BJT, MOSFET, IGBT)
5. Pulse gate requirement (SCR, GTO)
6. Bipolar voltage-withstanding capability (SCR, GTO)
7. Unipolar voltage-withstanding capability (BJT, MOSFET, GTO, IGBT)
8. Bidirectional current capability (TRIAC)
9. Undirectional current capability (SCR, GTO, BJT, MOSFET, IGBT)
STATIC CONVERTERS

Static converter is a power electronic converter that can convert electric power from one to another.

The static power converters perform these functions of power conversion.

The Power Electronic Converter can be classified into six types:

1. Diode Rectifier
2. AC to DC Converter (Controlled Rectifier)
3. DC to DC Converter (DC Chopper)
4. AC to AC Converter (AC voltage regulator)
5. DC to AC Converter (Inverter)
6. Static Switches
**Diode Rectifiers.** A diode rectifier circuit converts AC voltage into a fixed DC voltage. The input voltage to rectifier could be either single phase or three phase.

**AC to DC Converters.** An AC to DC converter circuit can convert AC voltage into a DC voltage. The DC output voltage can be controlled by varying the firing angle of the thyristors. The AC input voltage could be a single phase or three phase.

**AC to AC Converters.** This converters can convert from a fixed ac input voltage into variable AC output voltage. The output voltage is controlled by varying firing angle of TRIAC. These type converters are known as AC voltage regulator.

**DC to DC Converters.** These converters can converter a fixed DC input voltage into variable DC voltage or vice versa. The DC output voltage is controlled by varying of duty cycle.

**Static Switch.** Because the power devices can be operated as static switches or contactors, the supply to these switches could be either AC or DC and the switches are called as AC static switches or DC static switches.
Example of type of converter
# Table of Characteristic and Symbol of Power Electronic Devices

<table>
<thead>
<tr>
<th>Devices</th>
<th>Symbols</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>![Diode Symbol]</td>
<td>![Diode Characteristics]</td>
</tr>
<tr>
<td>Thyristor</td>
<td>![Thyristor Symbol]</td>
<td>![Thyristor Characteristics]</td>
</tr>
<tr>
<td>SITH</td>
<td>![SITH Symbol]</td>
<td>![SITH Characteristics]</td>
</tr>
<tr>
<td>GTO</td>
<td>![GTO Symbol]</td>
<td>![GTO Characteristics]</td>
</tr>
<tr>
<td>MCT</td>
<td>![MCT Symbol]</td>
<td>![MCT Characteristics]</td>
</tr>
<tr>
<td>MTO</td>
<td>![MTO Symbol]</td>
<td>![MTO Characteristics]</td>
</tr>
<tr>
<td>ETO</td>
<td>![ETO Symbol]</td>
<td>![ETO Characteristics]</td>
</tr>
</tbody>
</table>
## Table of Characteristic and Symbol of Power Electronic Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCT</td>
<td>![IGCT Symbol]</td>
<td>Gate (turn-on &amp; turn-off)</td>
</tr>
<tr>
<td>TRIAC</td>
<td>![TRIAC Symbol]</td>
<td>Gate triggered</td>
</tr>
<tr>
<td>LASC</td>
<td>![LASC Symbol]</td>
<td>Gate triggered</td>
</tr>
<tr>
<td>NPN BJT</td>
<td>![NPN BJT Symbol]</td>
<td></td>
</tr>
<tr>
<td>IGBT</td>
<td>![IGBT Symbol]</td>
<td></td>
</tr>
<tr>
<td>N-Channel MOSFET</td>
<td>![N-Channel MOSFET Symbol]</td>
<td></td>
</tr>
<tr>
<td>SIT</td>
<td>![SIT Symbol]</td>
<td></td>
</tr>
</tbody>
</table>

### Graphical Symbols
- **IGCT**: Gate (turn-on & turn-off)
- **TRIAC**: Gate triggered
- **LASC**: Gate triggered
- **NPN BJT**: Voltage characteristics
- **IGBT**: Voltage characteristics
- **N-Channel MOSFET**: Voltage characteristics
- **SIT**: Voltage characteristics
Control Characteristic of Power Electronic Devices

(a) Thyristor switch

(b) GTO/MTO/ETO/IGCT/MCT/SITH switch (For MCT, the polarity of $V_G$ is reversed as shown)
Control Characteristic of Power Electronic Devices

(b) GTO/MTO/ETO/IGCT/MCT/SITH switch (For MCT, the polarity of $V_G$ is reversed as shown)

(c) Transistor switch

(d) MOSFET/IGBT switch
CONVERTERS

1. AC to DC Converters

- Single phase, half wave AC to DC converter

Input voltage:

\[ v_i = V_m \sin(\omega t) \]

Output average voltage:

\[ v_{o,av} = v_{dc,av} = \frac{V_m}{2\pi} \left(1 + \cos \alpha \right) \]

rms value of Output voltage:

\[ V_{o,\text{rms}} = V_{dc,\text{rms}} = \frac{V_m}{2} \sqrt{\left[1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi}\right]} \]
1. AC to DC Converters

- Single phase, Full wave AC to DC converter

The average output voltage can be found from:

\[
V_{dc} = \frac{2}{2\pi} \int_{\alpha}^{\pi+\alpha} V_m \sin \omega t \, d(\omega t) = \frac{2V_m}{2\pi} \left[-\cos \omega t\right]_{\alpha}^{\pi+\alpha} = \frac{2V_m}{\pi} \cos \alpha
\]
1. AC to DC Converters

- Single phase, Full wave AC to DC converter

The rms value of the output voltage is given by

\[
V_{\text{rms}} = \left[ \frac{2}{2\pi} \int_{\alpha}^{\pi + \alpha} V_m^2 \sin^2 \omega t \, d(\omega t) \right]^{1/2} = \left[ \frac{V_m^2}{2\pi} \int_{\alpha}^{\pi + \alpha} (1 - \cos 2\omega t) \, d(\omega t) \right]^{1/2}
\]

\[
= \frac{V_m}{\sqrt{2}} = V_s
\]

With a purely resistive load, thyristors \( T_1 \) and \( T_2 \) can conduct from \( \alpha \) to \( \pi \), and thyristors \( T_3 \) and \( T_4 \) can conduct from \( \alpha + \pi \) to \( 2\pi \).
1. AC to DC Converters

- Three-phase, Half wave AC to DC converter

If the phase voltage is: \( v_{an} = V_m \sin \alpha \) the average output voltage for a continuous load current is:

\[
V_{dc} = \frac{3}{2\pi} \int_{\pi/6+\alpha}^{5\pi/6+\alpha} V_m \sin \omega t \, d(\omega t) = \frac{3\sqrt{3} V_m}{2\pi} \cos \alpha
\]
1. AC to DC Converters

- Three-phase, Half wave AC to DC converter

The rms output voltage is found from

\[ V_{\text{rms}} = \left[ \frac{3}{2\pi} \int_{\pi/6+\alpha}^{5\pi/6+\alpha} V_m^2 \sin^2 \omega t \, d(\omega t) \right]^{1/2} \]

\[ = \sqrt{3} V_m \left( \frac{1}{6} + \frac{\sqrt{3}}{8\pi} \cos 2\alpha \right)^{1/2} \]

For a resistive load and \( \alpha \geq \pi/6 \):

\[ V_{dc} = \frac{3}{2\pi} \int_{\pi/6+\alpha}^{\pi} V_m \sin \omega t \, d(\omega t) = \frac{3V_m}{2\pi} \left[ 1 + \cos \left( \frac{\pi}{6} + \alpha \right) \right] \]

\[ V_n = \frac{V_{dc}}{V_{dm}} = \frac{1}{\sqrt{3}} \left[ 1 + \cos \left( \frac{\pi}{6} + \alpha \right) \right] \]

\[ V_{\text{rms}} = \left[ \frac{3}{2\pi} \int_{\pi/6+\alpha}^{\pi} V_m^2 \sin^2 \omega t \, d(\omega t) \right]^{1/2} \]

\[ = \sqrt{3} V_m \left[ \frac{5}{24} - \frac{\alpha}{4\pi} + \frac{1}{8\pi} \sin \left( \frac{\pi}{3} + 2\alpha \right) \right]^{1/2} \]
1. **AC to DC Converters**

- Three-phase, Full Wave AC to DC converter
If the line-to-neutral voltages are defined as

\[ v_{an} = V_m \sin \omega t \]
\[ v_{bn} = V_m \sin \left( \omega t - \frac{2\pi}{3} \right) \]
\[ v_{cn} = V_m \sin \left( \omega t + \frac{2\pi}{3} \right) \]

the corresponding line-to-line voltages are

\[ v_{ab} = v_{an} - v_{bn} = \sqrt{3} V_m \sin \left( \omega t + \frac{\pi}{6} \right) \]
\[ v_{bc} = v_{bn} - v_{cn} = \sqrt{3} V_m \sin \left( \omega t - \frac{\pi}{2} \right) \]
\[ v_{ca} = v_{cn} - v_{an} = \sqrt{3} V_m \sin \left( \omega t + \frac{\pi}{2} \right) \]

The average output voltage is found from

\[ V_{dc} = \frac{3}{\pi} \int_{\pi/6 + \alpha}^{\pi/2 + \alpha} v_{ab} d(\omega t) = \frac{3}{\pi} \int_{\pi/6 + \alpha}^{\pi/2 + \alpha} \sqrt{3} V_m \sin \left( \omega t + \frac{\pi}{6} \right) d(\omega t) \]
\[ = \frac{3\sqrt{3}}{\pi} V_m \cos \alpha \]
2. **DC-DC CONVERTER (DC Chopper)**

In many industrial applications, DC-DC converter is required to convert a fixed-voltage DC source into a variable-voltage DC source. Like a transformer, DC-DC converter can be used to step down or step up a DC voltage source.

**Application:**

Traction motor control in electric automobiles, trolley cars, marine hoists, forklift trucks, mine haulers, etc.

**Advantages:**

High Efficiency and fast dynamic response.
When the switch SW is closed for a time $t_1$, the input voltage $V_s$ appears across the load $V_o = V_s$. If the switch remains off a time $t_2$, the voltage across the load is zero, $V_o = 0$.

The converter switch SW can be implemented by using Transistor, MOSFET, GTO, IGBT, BJT, etc.
The average output voltage is given by:

\[ V_o = \frac{1}{T} \int_0^{t_1} V_o \, dt = \frac{t_1}{T} V_s = f \, t_1 \, V_s = k \, V_S \]

The average output current is given by:

\[ I_o = \frac{V_o}{R} = k \, \frac{V_S}{R} \]

The average output voltage is given by:

\[ V_{\text{rms}} = \left( \frac{1}{T} \int_0^{t_1} V_o^2 \, dt \right)^{1/2} = \sqrt{k} \, V_s \]

The input power:

\[ P_i = \frac{1}{T} \int_0^{t_1=kT} V_o \, i \, dt = \frac{1}{T} \int_0^{t_1=kT} \frac{V_o^2}{R} \, dt = k \, \frac{V_S^2}{R} \]

Where:
- \( T \) is the chopping period
- \( k = t_1/T \) is the duty cycle
- \( f = 1/T \) is chopping frequency
When switch SW is closed for $t_1$, the inductor current rises and energy is stored in the inductor L. If the switch SW is opened for time $t_2$, the energy stored in the inductor is transferred to load through diode $D_1$ and the inductor current falls.
When this DC to DC converter is turned on " switch SW is closed, the voltage across the inductor $L$ is:

$$v_L = L \frac{di}{dt}$$

And this gives the peak-to-peak ripple current in inductor as:

$$\Delta I = \frac{V_s}{L} t_1$$

The average output voltage is:

$$v_o = V_s + L \frac{\Delta I}{t_2} = V_s \left(1 + \frac{t_1}{t_2}\right) = V_s \frac{1}{1 - k}$$
Buck–Boost Regulators

A buck–boost regulator provides an output voltage that may be less than or greater than the input voltage—hence the name “buck–boost”; the output voltage polarity is opposite to that of the input voltage. This regulator is also known as an inverting regulator. The circuit arrangement of a buck–boost regulator is shown in Figure

The circuit operation can be divided into two modes. During mode 1, transistor $Q_1$ is turned on and diode $D_m$ is reversed biased. The input current, which rises, flows through inductor $L$ and transistor $Q_1$. During mode 2, transistor $Q_1$ is switched off and the current, which was flowing through inductor $L$, would flow through $L$, $C$, $D_m$, and the load. The energy stored in inductor $L$ would be transferred to the load and the inductor current would fall until transistor $Q_1$ is switched on again in the next cycle. The equivalent circuits for the modes are shown in Figure 5.18b. The waveforms for steady-state voltages and currents of the buck–boost regulator are shown in Figure 5.18c for a continuous load current.
(a) Circuit diagram

(b) Equivalent circuits

(c) Waveforms
Assuming that the inductor current rises linearly from \( I_1 \) to \( I_2 \) in time \( t_1 \),

\[
V_s = L \frac{I_2 - I_1}{t_1} = L \frac{\Delta I}{t_1}
\]

or

\[
t_1 = \frac{\Delta I L}{V_s}
\]

and the inductor current falls linearly from \( I_2 \) to \( I_1 \) in time \( t_2 \),

\[
V_a = -L \frac{\Delta I}{t_2}
\]

or

\[
t_2 = \frac{-\Delta I L}{V_a}
\]

where \( \Delta I = I_2 - I_1 \) is the peak-to-peak ripple current of inductor \( L \). From Eqs

\[
\Delta I = \frac{V_s t_1}{L} = \frac{-V_a t_2}{L}
\]
Substituting \( t_1 = kT \) and \( t_2 = (1 - k)T \), the average output voltage is

\[
V_a = -\frac{V_sk}{1 - k}
\]

Substituting \( t_1 = kT \) and \( t_2 = (1 - k)T \) into Eq. (5.78) yields

\[
(1 - k) = \frac{-V_s}{V_a - V_s}
\]

Substituting \( t_2 = (1 - k)T \), and \( (1 - k) \) from Eq. (5.79) into Eq. (5.78) yields

\[
t_1 = \frac{V_a}{(V_a - V_s)f}
\]

Assuming a lossless circuit, \( V_s I_s = -V_a I_a = V_s I_a k/(1 - k) \) and the average input current \( I_s \) is related to the average output current \( I_a \) by

\[
I_s = \frac{I_a k}{1 - k}
\]