EEM 323/3 - Assignment

- 1. A platinum resistance sensor has a resistance of 100Ω at 0 °C and a temperature coefficient of resistance of 4×10^{-3} °C⁻¹. Given that a 15 V supply is available, design a deflection bridge giving an output range of 0 to 100 mV for an input range of 0 to 100 °C:
 - (a) using the procedure discussed in lectures.
 - (b) using the linear approximation discussed in lectures.
 - (c) how should the circuit be altered if the input range is changed to 50 to 150 °C?

Give values for all circuit components and assume a high impedance load.

2. The resistance $R_{\theta}(k\Omega)$ of a thermistor at θ^{0} K is given by:

$$R_{\theta} = 1.68 \left[3050 \left(\frac{1}{\theta} - \frac{1}{298} \right) \right]$$

The thermistor is incorporated into the deflection bridge circuit shown in Fig. 2

- (a) Assuming that V_{out} is measured with a detector of infinite impedance, calculate:
 - (i) the range of V_{out} corresponding to an input temperature range of 0 to 50 °C.
 - (ii) the non-linearity at 12 °C as a percentage of full-scale deflection.
- (b) Calculate the effect on the range of V_{out} of reducing the detector impedance to 1 k Ω .

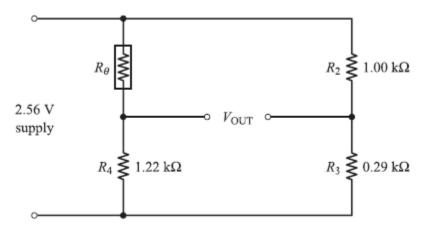


Fig. 2

Fig. 3 shows a four-lead bridge circuit; R_c is the resistance of the leads connecting the 3. sensor to the bridge circuit. Show that $E_{Th} \approx V_s \left(\frac{R_0}{R_3}\right) \alpha T$, i.e. the bridge output voltage is unaffected by changes in R_c . State all assumptions.

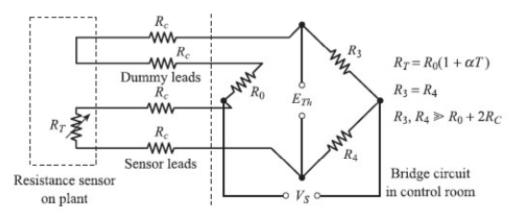


Fig. 3

4. A low-voltage Schering bridge shown in Fig. 4 is used to measure the unknown permittivity of a specimen using 2-plate capacitor, C_1 with area A and distance d.

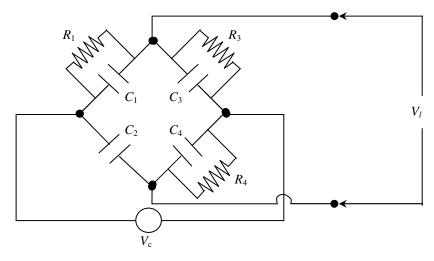
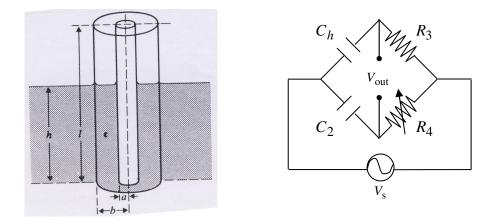
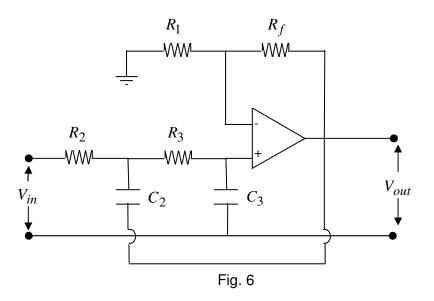


Fig. 4

Referring to Fig. 4, R_1 is a stray resistor, R_3 and R_4 are pure non-reactive resistors, and C_2 , C_3 and C_4 are pure non-reactive capacitors. Without the specimen the following balanced condition are attained: $C_3 = C_4 = 120 \text{ pF}$, $C_2 = 140 \text{ pF}$ and $R_3 = R_4 = 5000 \Omega$. With the specimen the values changed to $C_3 = 200 \text{ pF}$, $C_4 = 1000 \text{ pF}$, $C_2 = 900 \text{ pF}$, and $R_3 = R_4 = 500 \,\Omega$. If $V_c = 10 \,V (RMS)$ and $\omega = 5000 \,rad/s$, calculate the relative permittivity of the specimen.

- 5. (a) List common source of errors in AC bridge circuits. Hence, state several precautions that should be taken to reduce the errors.
 - (b) In designing a sensing circuit for measuring the level of oil (ε_{oil}) inside a tank, the capacitive level sensor has been proposed. Meanwhile, the simplified fourarm De-Sauty bridge has been suggested for signal detection. Figure 1 shows the instrumentation and measurement system. In this figure R_4 and C_2 are pure resistance and capacitance respectively, C_h is the sensor capacitance at a height h of the oil and R_4 is the variable resistance.



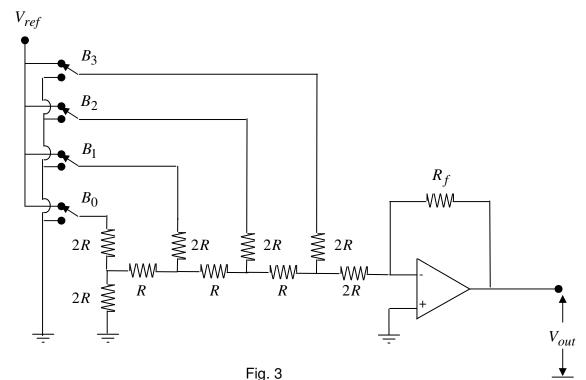

Fig. 5

The relationship between C_h and h of the capacitive sensor is as follows:

$$C_h = \frac{2\pi\varepsilon_0}{\log_e \left(\frac{b}{a}\right)} [1 + (\varepsilon_{\text{oil}} - 1)h]$$

(i) Derive the balanced conditions of Fig. 5,

- (ii) Calculate h when at balance $C_2 = 1000 \,\mu\text{F}$, $R_4 = 10 \,\Omega$, $R_3 = 1250 \,\Omega$, $\varepsilon_0 = 1$, $\varepsilon_{\text{oil}} = 3$, $b = 2 \,\text{cm}$ and $a = 0.5 \,\text{cm}$,
- (iii) State the main source of error in 1(b) (ii).
- 6. (a) Explain the important of the quality factor Q and the damping factor ξ in filter design.
 - (b) The Sallen-Key second order low pass filter is shown in Fig. 6.



Prove the transfer function of the above filter is given by

$$H(s) = \frac{\frac{G}{R_2 R_3 C_2 C_3}}{s^2 + \left(\frac{R_3 C_3 + R_2 C_3 + R_2 C_2 - G R_2 C_2}{R_2 R_3 C_2 C_3}\right)s + \frac{1}{R_2 R_3 C_2 C_3}}$$

and $G = 1 + \frac{R_f}{R_1}$.

Assuming $R_2 = R$, $R_3 = 2R$, $C_2 = C$, $C_3 = 2C$ /and $R_f = R_{1,}$

- (i) Design filter in Figure 2 such that the resonance frequency $\omega_o = 1000 \text{ rad/sec}$,
- (ii) From 2(b)(ii), calculate the Q and damping ξ factors of the filter,
- (iii) Hence, modify Figure 2 so that the above filter has the Butterworth response such that $|H(j\omega_0)| = 1$ or 0 dB.
- 7. (a) Explain the terms (i) resolution, (ii) quantum error, (iii) acquisition time t_{aq} , (iv) aperture time t_{ap} and (v) settling time t_s with respect to the analogue-to-digital converter.
 - (b) The 4-bit R 2R type digital-to-analogue converter is shown in Fig. 7.

.g. s

- (i) Derive the output V_{out} when the most significant bit (MSB) is turned on only,
- (ii) Repeat 3(b)(i) for the least significant bit (LSB),
- (iii) Repeat 3(b)(i) for an input $B_3B_2B_1B_0 = 1001$,
- (iv) From 3(b)(i-iii) derive the general expression for V_{out} .