EEC 511/4 Digital Image Processing in VLSI

Assignment

SECTION A

1. The gray scale distribution n_k of an image quantised over 8 levels $r_k; k = 0,1,2,...,7$ is tabulated in (a) and (b) shows the specified histogram with probability density function P_z .

r_k	n _k	Zk	P_z	
0	612	0	0	
1	163	1	0.05	
2	335	2	0.1	
3	573	3	0.2	
4	1186	4	0.3	
5	613	5	0.2	
6	614	6	0.1	
7	0	7	0.05	
(a)			(b)	

- (a) Perform histogram equalisation on (a) and tabulate the new gray scale distribution quantized into 3-bit.
- (b) Perform histogram equalisation using (b) and tabulate the new gray scale distribution quantized into 3-bit.
- 2. The basic approach used to approximate a discrete derivative involves taking differences of the form

$$f(x, y) - f(x+1, y) + f(x, y) - f(x, y+1)$$

- (a) Obtain this filter function in frequency domain.
- (b) Without performing detailed mathematical calculation show that (a) is a high pass filter.

<u>Given</u>

$$\Im f\left(x - x_{0,}y - y_{0}\right) = F(u,v)e^{-j2\pi\left(\frac{ux_{0}}{M} + \frac{vy_{0}}{N}\right)}$$

$$2j\sin x = e^{jx} - e^{-jx}$$

$$2\cos x = e^{jx} + e^{-jx}$$

3. A degradation function of a certain image capturing device can be modeled as the convolution of the captured image with the spatial, circularly symmetric function such as

$$h(r) = [(r^2 - \sigma^2)/\sigma^4]e^{-r^2/2\sigma^2}$$

where $r^2 = x^2 + y^2$. Show that the degradation in the frequency domain is given by

$$H(u,v) = -\sqrt{2\pi}\sigma(u^{2} + v^{2})e^{-2\pi^{2}\sigma^{2}(u^{2} + v^{2})}$$

<u>Given</u>

$$\Im \left[\nabla^2 f(x, y) \right] = -\left(u^2 + v^2 \right) F(u, v)$$

$$\Im \left[A e^{-\left(x^2 + y^2 \right)} \right] = A \sqrt{2\pi} \sigma e^{-2\pi^2 \sigma^2 \left(u^2 + v^2 \right)}$$

- 4. Write an expression for $\psi_{3,3}$ in terms of the Haar scaling function. Hence draw wavelet $\psi_{3,3}$ for the Haar wavelet function.
 - (b) Consider the 2×2 image shown in Fig. 4(b).

$$f(x,y) = \begin{bmatrix} 3 & 1 \\ 6 & 2 \end{bmatrix}$$

- (i) draw the require filter bank to implement the two-dimensional FWT with respect to Haar wavelets of Fig. 6(b). Label all inputs and outputs with the proper arrays.
- (ii) use the result from 6(b)(i) to draw the require filter bank to implement the two-dimensional inverse FWT. Label all inputs and outputs with the proper arrays.

Given:

The wavelet functions are defined as:

$$\psi_{j,k}(x) = 2^{\frac{j}{2}} \psi(2^j x - k)$$
$$\psi(x) = \sum_n h_{\psi}(n) \sqrt{2} \varphi(2x - n)$$

The Haar scaling function is defined as :

$$\varphi(x) = \begin{cases} 1 & ; & 0 \le x < 1 \\ 0 & ; & \text{elsewhere} \end{cases}$$

The scaling function coefficients for the Haar function are given by:

$$h_{\varphi}(n) = \left\{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\}$$
 for $n = 0, 1$

The scaling function coefficients for the Haar wavelet are given by:

$$h_{\psi}(n) = \left\{\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right\}$$
 for $n = 0, 1$

SECTION B

5. A computer-based image inspection system was proposed to inspect a 4×3 rectangular block in an image A of size 8×8 . However, due imperfection of image capturing devices, noise in the form of small hole and protrusion appear in the block as shown in Fig. 5(b)

- i. Device a strategy to automatically inspect and locate these types of defects in *A*. Show clearly the results of the proposed strategy using image in Fig. 5(b). Hence, discuss one main drawback of the proposed strategy.
- ii. Implement this strategy in FPGA. Draw the RTL diagram for the corresponding Verilog codes.