QUESTION & ANSWER

(This file will be regularly updated until one day before the Final Examination – please take note) ---Current Update 06/11/07
1. Registers x and y are declared as reg [2:0] x,y;. x and y have initial values of 1 and 2 respectively. Find the value of x and y after each of the following Verilog codes have been executed.
(a) y = x && y;

x = y & x;

Ans: x = 1, y = 1

(b) x <= (y) ? y : x;

y <= (x) ? x : y;

Ans: x = 2, y = 1

(c) x = (y) ? y : x;

y = (x) ? x : y;

Ans: x = 2, y = 2

(d) x <= x << 1;

x[0] <= x[2];

Ans: x = 2, y = 2

(e) x = x && (˜y);

y = x + y;

Ans: x = 1, y = 3
2. Write the Verilog code to implement the following shift register.
[image: image1.emf]
Ans:

module shftreg1(Q, d, clk);

input clk, d;

output [2:0] Q;

reg [2:0] Q;

always @(posedge clk)

begin

Q<=Q>>1;

Q[2]<=Q[0];

end

endmodule

3. Registers a, b are declared as reg [2:0] a,b;. a and b have initial values of 3 and 1 respectively. Find the values of a and b after each of the following Verilog codes are executed.
(a) a = b + 2;

b = a + 2;

Ans: a = 3; b = 5;

(b) b = a + 2;

a = b + 2;

Ans: a = 7; b = 5;

(c) a <= b + 2;

b <= a + 2;

Ans: a = 3; b = 5;

(d) b <= a + 2;

a <= b + 2;

Ans: a = 3; b = 5;

(e) b = a && b;

a = b & a;

Ans: a = 1; b = 1;

(f) a <= |b;

b <= &a;

Ans: a = 1; b = 0;
4. Draw the state diagram of the FSM implemented by the following Verilog code.
reg [1:0] a,b;

wire x,y;

always @(a or x)

begin

case (a)

2’b00: b = (x) ? 2’b01 : 2’b00;

2’b01: b = (x) ? 2’b10 : 2’b00;

2’b10: b = (!x) ? 2’b11 : 2’b00;

2’b11: b = 2’b00;

endcase

end

always @(posedge clk)

begin

a <= b;

end

assign y = &a;

Ans:

[image: image2.emf]
4. State whether the following Verilog procedures generate combinational logic, latches or flip-flops. If a procedure generates latches, modify the code to produce combinational logic.
For marking: Questions (a) and (f) do not contain latches. They carry 1 mark each. The other questions contain latches.

They carry two marks. Identification of latches carries one mark and eliminating them by modification of the code carries

another mark.

(a) wire A, B;

reg Y;

always @(A or B)

begin

Y = A|B;

end

Ans: Combinational Logic

(b) wire A, B, C;

reg Y;

always @(A or B)

begin

Y = (A|B)&C;

end

Ans: Produces latches. Modify the code by adding C to the trigger list. always @(A or B or C)

(c) reg s;

reg q,r;

always @(s)

begin

case (s)

1’b0: q = 1’b1;

1’b1: r = 1’b1;

endcase

end

Ans: Produces latches. Modify the code to initialize q and r before the case statement eg. q=0;r=0;. Or make

sure that both q and r are given values in both paths of the case statement.

(d) reg [1:0] x;

reg [1:0] q;

always @(x)

begin

case (x)

2’b00: q = 2’b01;

2’b10: q = 2’b10;

endcase

end

Ans: Produces latches. Adding a default case for the case statement eliminates the latches.

default: q = 2’b00;.

(e) wire A, D;

reg B, C, D;

always@(posedge A)

begin

B <= C;

C <= D;

end

Ans: Produces flip-flops.
5. The for loop in the code below looks harmless but is actually an infinite loop. Why?

Hint: It has to do with the way i is declared.
module iloop(z,a);

input [31:0] a;

output z;

reg [4:0] i;

reg s, z;

initial begin

s = 0;

for(i=0; i<32; i=i+1) s = s | a[i];

z = !s;

end

endmodule

Ans:

Because i is only five bits and so it's impossible to represent 32. When i is 31 the statement i=i+1 will set i to zero

(the overflow bit is ignored). Since 32 can't be represented i<32 is always true and so there's no way out of the for loop.

6. Give the result of each Verilog expression (in binary) for the following inputs:

A = 4b’1001, B = 5’b10010, and C = 5b’11010. Assume A is a 4-bit wire and B and C are each 5-bit wires. Show your results using Verilog notation, such as 3’b101.

Question & Answer shown in red

A & (B | C); __5’b01000_________

^ B; __1’b0_____________

(A < B) ? A : B; __5’b01001_________

7. Write a single Verilog statement that declares a 12-bit by 16-word memory called mem1. Also, write a Verilog code segment that assigns the fifth word of mem1 the decimal value 127 on the positive edge of the signal clock.

Answer:

reg [11:0] mem1 [0:15];

always @(posedge clock) mem1[4] <= 127;

8. Complete the following clk_gen module, which generates a clock signal that initially

goes to zero for 7 ns, then goes to one for 3 ns, and then repeats this pattern indefinitely. All the code you add should go inside of the initial block:

module clk_gen;

reg clock;

initial begin

forever begin

clock = 0;

#7 clock = 1;

#3;

end

end

endmodule

9. Give a simplified Boolean equation that is equivalent to the following Verilog

statement, assuming that a, b, c and z are each one-bit wires:
assign z = c ? (a ? b : c) : b;

z = b | (~a) & c

z = c& (a&b | (~a)&c) | (~c)&b

z = a&b&c | (~a)&c | (~c)&b

z = b | (~a)&c

10. After the following statement, what value does A have? Give your answer in binary.

wire [7:0] A = -7’h34; A = 8’b11001100
11. What are one advantage and one disadvantage that RTL Verilog has compared to

behavioral Verilog?

Many solutions accepted. One possible advantage is that RTL Verilog is easier to

synthesize. One possible disadvantage is that behavioral Verilog can implement more powerful

constructs and can describe edge-triggered devices.

12. Use structural Verilog to specify a 4-input AND gate named AND4 with inputs A, B, C, D, output Z, and a delay of 2 time units.

and #2 AND4(Z, A, B, C, D);

13. What advantage is there to connecting ports by name, rather than position?

Many solutions accepted, but the primary reason is that it is more likely that wires will be

connected to the correct port (i.e. it is harder to make a mistake).

14. Draw a circuit for which the output of the circuit is 1’bx in Verilog. Draw a second

circuit for which the output of the circuit is 1’bz. For the first circuit, label the output A and for the second circuit, label the output B.

Many solutions accepted, below are two possible solutions
[image: image3.emf]
15. What is the difference between inertial delay and transport delay? When is each used in Verilog?

Several possible solutions, but we were mainly looking for inertial delays do not transmit

short pulses, transport delays do. Inertial delays used for gates. Transport delays used for wires.
16. Given values of a, b, and c as shown, write the result of expressions shown below.

Assume: a is [3:0], b is [3:0], c is [5:0]

Assume: a = 4'b0010 , b = 4'b1010 , c = 6'b001101

Evaluate the following expressions:

 a & b = ? a || b = ?

 a && b = ? a | b = ?

 a + b = ? a = c , a = ?

 a - b = ? c = b , c = ?

 &b = ? | a = ?

Solution:

a = 4'b0010
b = 4'b1010
c = 6'b001101

 a & b = 4b'0010 a || b = 1'b1
 a && b = 1'b1 a | b = 4b'1010
 a + b = 4b'1100 a = c , a = 4'b1101
 a - b = 4b'1000 c = b , c = 6'b001010
 &b = 1'b0 | a = 1'b1
17. Write Verilog code corresponding to the following state table.

 | x | z

 | 0 1 |

 ------+----------------+------

 q1 | q1 q2 | 0

 q2 | q1 q3 | 0

 q3 | q4 q2 | 0

 q4 | q2 q1 | 1

Solution:

// Usign continuous assign is acceptable

module state_detector(x,z);
input x;
output z;
reg [1:0]current;
parameter [1:0]q1=0,q2=1,q3=2,q4=3;
 initial current=q1;
 always
 begin
 if(current == q1)current = x?q2:q1;
 else if(current == q2)current = x?q3:q1;
 else if(current == q3)current = x?q2:q4;
 else if(current == q4)current = x?q1:q2;
 end
 assign z = (current==q4)?1'b1:1'b0;
endmodule

18. In the following partial codes, count becomes 1 at time 10. Write values of a and b

between time 0 and 40.

//code 1

always begin

wait (count)

#10 a = a + 1;

end

//code 2

always begin

@ (count)

#10 b = b + 1;

End

[image: image4.emf]
Ans:
[image: image5.emf]
19. What is one advantage and one disadvantage that designs using FPGAs have

compared to designs using standard cells.

Advantage: FPGAs are reprogrammable.

Disadvantage: FPGAs are typically slower and take more area than standard cell designs.
20. Explain briefly how the following post-synthesis tasks differ for standard cells

and for FPGAs:

a) Technology mapping:

With FPGAs, the functionality is mapped to fixed combinational logic box. With

standard cells the functionality is mapped to cells in the cell library.

b) Placement and routing

With FPGAs placement and routing determine in which CLBs various functions will be implemented and how to connect the CLBs using programmable interconnect. With standard cells, placement and routing determines where to physically place each cell how to connect the cells using wires.

c) Final implementation in silicon

FPGAs have already been fabricated and have the design implemented on them by

downloading a bit stream. With standard cells, masks are made and then used to

fabricate the device.
