EEE130 Digital Electronics |
Lecture #2
-Number Systems, Operations and Codes-

By Dr. Shahrel A. Suandi

Topics to be discussed

2-1 Decimal Numbers

2-2 Binary Numbers

2-3 Decimal-to-Binary Conversion

2-4 Binary Arithmetic

2-5 1's and 2's Complements of Binary Numbers
2-6 Signed Numbers

2-7 Arithmetic Operations with Signed Numbers
2-8 Hexadecimal Numbers

2-9 Octal Numbers

2-10 Binary Coded Numbers (BCD)

2-11 Digital Codes

2-12 Error Detection and Correction Codes

2-1 Decimal Numbers

These numbers are used every day in our
daily lives

Actually, decimal numbers Is a type of
weighted system numbers
Why??

— The position of each digit in a decimal number
Indicates the magnitude of the quantity
represented and can be assigned a weight

The weight = positive powers of ten

... 10%101 109

Fractional numbers in decimal
numbers

* The weights for fractional numbers in
decimal numbers are negative powers of
ten

— They decrease from left to right beginning
with 10—1

* They are written as follows

10210* 10°.101107210 ...

Decimal point

What is the meaning of weighted
number system??

* As mentioned before, each number will be
multiplied by its weight to get the actual number

« Example:
— Let's consider 23 (in decimal number) or, in words
twenty three 101 10°
23
N
2 3
/ 1 \ 0
2 x 10 3 f< 10
v
2 3
N

2-2 Binary Numbers

These types of numbers have only two
digits: 1 and O (bits)

Therefore, it Is less complicated compared
to decimal numbers
The base Is two and written as

(0011)2 = 31,
In general, with n bits we can count up to a
number equal to 2™ —1

Application using binary numbers

* A counting system that counts tennis ball

Ball count 1st 2nd 3rd 4th 5th 6th Tth #th %h

A

The weighting structure of binary
numbers

« Similar to decimal numbers, binary
numbers are weighted number systems
 How the weights are structured?
— Based on powers of two, which begins with 0
— Refer to Table 2-2 for clearer picture

» Let’'s look at the two examples in our text
book

2-3 Decimal-to-Binary Conversion

 After learning decimal and binary numbers,
we must be able to convert between these

two
* Decimal-to-binary conversion methods:
— Sum-of-weight method
c9=8+1-—9=2°) {msem
— Repeated division-by-2 method
* Check page 54

Converting Decimal Fractions to
Binary

* There are two methods:
— Sum-of-weights
+ 0.625=0.5+0.125=2"1 +273 =(.101
— Repeated multiplication by 2
 Let’s look at page 56

2-4 Binary Arithmetic

* There
binary

are 4 arithmetic operations using

— Binary addition

— Binary subtraction
— Binary multiplication
— Binary division

o All arit

nmetic operations follow the same

procedure as decimal numbers have —

carry,

porrow, partial products

2-51's and 2's Complements of

Binary Numbers

These complements of binary numbers are
Important because they permit the
representation of negative numbers

How to find 1's complement?

— By changing all 1s to Os and all Os to 1s
How to find 2's complement?

— By changing all 1s to Os and all Os to 1s, then add 1
o the LSB

— Alternative method to find 2's complement

 Start with LSB and write the bits as they are up to and
Including the first 1

« Take the 1’'s complements of the remaining bits

Example of obtaining 2's complement
of a negative binary number

Negative number

l 0 l 0 l 0 I 0
l
I’s complement }(/) Y }{ Y \{ Y \{ Y

Input bits
Adder CarTy [
| (add 1)
Output bits (sum)

2’s complement 0 I 0] 0 l l 0

Let’'s do some exercises!!

Section 2-5 Review
Questions

1. Determine the 1's
complement of each
binary number:

2. Determine the 2’s
complement of each
binary number:

00011010 | 11110111 | 10001101
11100101 | 00001000 | 01110010
00010110 || 11111100 || 10010001
11101010 || 00000100|| 01101111

2-6 Signed Numbers (1)

* The sign bit

— The left-most bit in a signed binary number is
the sign bit, which tells us whether the
number Is positive or negative

* 0: positive, 1: negative
« Sign-magnitude form

— The magnitude bits are the remaining bits
after the sign-bit

(00011001

Sign bit

Magnitude bits

Signed numbers (2)

* 1's complement form

— In the 1's complement form, a negative number is the
1’s complement of the corresponding positive number

¢ 2’s complement form

— In the 2's complement form, a negative number is the
2’'s complement of the corresponding positive number

* The decimal value of signed numbers
— Sign-magnitude
— 1's complement
— 2's complement

Signed Numbers (3)

* Range of Signed Integer Numbers That
Can be Represented
— 8 bit = 1 Byte
— With one byte or eight bits, 256 different

numbers can be represented. How about 16
bits and 32 bits?? More numbers can be used

— To know the total of combinations of n bits:

- Total combinations = 2"
* The range of values for n-bit numbers is

— (27 Dyto(27 1 — 1)

Signed Numbers (4)

* Floating-point numbers

— Consists of two parts;

« Mantissa — the part of floating-point number that represents
the magnitude of the number

« Exponent — the part of a floating-point number that
represents the number of places that the decimal point (or
binary) is to be moved

S | Exponent (E) Mantissa (fraction, F)
1 bit 8 bits 23 bits
* Formula

Number = (—1)5(1 + F)(2E-127)

2-7 Arithmetic Operations with
Sighed Numbers

It is important to know this for 2’s complement form
because this type of binary representation is widely used
INn computers and microprocessor-based systems

Addition

— Both positive number

— Positive number with magnitude larger than negative number
— Negative number with magnitude larger than positive number
— Both numbers negative

We also need to know:

— Overflow condition — when two numbers are added and the
number of bits required to represent the sum exceeds the
number of bits in the two numbers - resulting /ncorrect sign bit

— Numbers are added two at a time — for addition, two numbers
are added at one time (example 2-19)

Subtraction of signed numbers

« Subtraction is a special case of addition —
change the sign of the subtrahend and adds it to

the minuend

« What is subtrahend and minuend?
— Subtrahend — the amount/quantity to be subtracted
(book example: 6)
— Minuend — the amount/quantity to be subtracted from
(book example: 9)
 Big hints:
— To subtract two signed number, take the 2's
complement of the subtrahend and add. Discard any
final carry bit

Multiplication of signed numbers

 Numbers involved in a multiplication are
multiplicand, multiplier and product

* Performing multiplication using addition:
— Direct addition and partial products

* When two binary numbers are multiplied,

both numbers must be In true
(uncompleted) form

* Look at example 2-22 for more details on
this operation

Division of signed numbers

* Numbers involved In a division are
dividend, divisor and quotient

* Division can also be performed using an
adder — due to division is accomplished
using subtraction in computers, and as
division is also using adder, division can
also be performed with an adder

* The operation stops when the quotient is O

2-8 Hexadecimal Numbers(1)

Hexadecimal numbers are one of the most important
numbers in digital systems, as “Assembly” language
(machine language) uses this number to program a
MIiCro processor system

It uses sixteen characteristics, but easy to read as each
of its 4 bits are used to represent a number between O-
16

Binary-to-hexadecimal conversion
Hexadecimal-to-binary conversion

Hexadecimal-to-decimal conversion
— Convert to binary and followed by decimal

Decimal-to-hexadecimal conversion

2-8 Hexadecimal Numbers(2)

« Hexadecimal addition

— Use common addition method — less than 15,
write the answer in hexadecimal number, and
If >15, carry one to the next bit

« Hexadecimal subtraction

— There are three ways can be used (see next
slide)

— They are all 2’'s complement

Hexadecimal

Subtract from

Y

1’s complement

in hexadecimal

2’s complement

maximum in hexadecimal
plus 1
Example:
2A FF - 2A > D5 + 1 D6
Hexadecimal Binary Gis f:om.plemenl 2 > complement
in binary in hexadecimal
Example:
2A 00101010 > 11010110 D6
Hoxadecimal b—sl 0123456789ABCDEF | SCOMPIEMENL || 9 complement
EEDCB A9 87 6543210 plus | in hexadecimal
Example:
3456789 E N
“ 1 CBA9S76 | Do i 2

Method 1

Method 2

Method 3

2-9 Octal Numbers

This number is composed of eight digits; 0-7

Octal-to-decimal conversion
— Similar to others
Decimal-to-octal conversion
— Using this following technique
Binary-to-octal conversion

— Quite similar with binary-to-hexadecimal conversion

— If there are not enough bit (for the most left bit), add 1
or 2 zeros as 0s will never affect the binary numbers

2-10 Binary Coded Decimal (BCD)

BCD is a way to express each of the decimal digits with
a binary code
— There are only 10 groups in BCD system

8421 Code

— This is a type of BCD code which indicates the binary weights
— BCD €->8421 code

Invalid codes — these are the codes that are not used in
BCD (remember that BCD is a 10 groups number AND
NOT 16), so A to F are not included

BCD addition — carefully do this as there are va/id and
/nvalid answers
— For invalid answers, just add 6 to them

2-11 Digital Codes

In digital systems, there are various types of codes and expressed in
terms of numbers, characters, alphanumeric, etc.

Famous codes are Gray code and ASCII

Gray code:
— This code is unweighted and is not an arithmetic code

— Specially used in shaft position encoders

— Binary-to-Gray code conversion
« MSB Gray code = MSB Binary code
» From left to right, add each adjacent pair of binary code bits to get the next
Gray code bit. Discard carries
— Gray-to-binary code conversion

 MSB binary code = MSB Gray code
« Add each binary code bit generated to the Gray code bit in the next adjacent
position. Discard carries

Gray code application

Contact brushes in a fixed
position slide along the surface
of the rotating conductive rings

110 111 3-bit

011 010

(a) Binary

* Problems arise if binary code is used in this application
when 111->000 (counterclockwise) =3 bits change

« This problem might be solved if Gray code is used due to
only one bit might cause problem

Alphanumeric

» Alphanumeric codes are codes that
represent numbers and alphabetic
characters (letters)

» Consists of 10 decimal digits and 26
letters of the alphabet

 Bits required Is 6 bits = In binary then we
need more than 2° = 32 which is 26 = 64

— The remaining 28 bits are used for other
purposes like periods, colons, semicolons, etc.

ASCII

o Stands for “American Standard Code for
Information Interchange”

« Has 128 characters and symbols
— Represented in 7-bit binary code
— First 32 ASCII characters are used for control

7 13

purposes, like “null”, “line fee”, etc.

« Extended ASCII characters

— Used for other than English language (additional of
128 characters)

— Adopted by IBM to be used in PCs

2-12 Error Detection and

Correction Codes

* We can detect a single bit error, or detect and
correct a single bit error

 How to do this??
— By performing parity check
 Parity method for error detection

— Parity bit is used in many systems as a means for bit
error detection

— Attached at the beginning or end of the code

— Parity, which is odd or even, is assigned to a group of
bits for error detection purpose
« Note here that parity is either odd or even
« Odd - total number of 1s is odd, and vice versa to even
— Detecting an error

* By using odd or even information. Let’s try it

Parity method for error detection

= TABLE 2-10

The BCD code with parity bits.
50 0000 ! 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

I 0100 ' 0 0100

0 0101 1 0101

0 0110 ! 0110

| 0111 0 0111

| 1000 0 1000

0 1001 1 1001

The Hamming Error Correction
Code

Hamming code provides for single-error
correction

— It provides more information so that correction can
also be done besides detection

Number of parity bits

— We need to decide how many parity bits to be used to
detect and correct an error W > d+4p+1

— Check Eqg. 2-1
Detecting and correcting an error with the
Hamming code

— Let’'s try to look at the examples and related problems
for more intuitive explanations

I EXAMPLE 2-41
Determine the Hamming code for the BCD number 1001 (data bits), using even parity.

Solution Step 1: Find the number of parity bits required. Let p = 3. Then
8= 2
d+p+1=4+3+1=8
Three parity bits are sufficient.
Total code bits = 4 + 3 = 7

Step 2: Construct a bit position table, as shown in Table 2—12, and enter the data
bits. Parity bits are determined in the following steps.

TABLE 2-12

BIT DESIGNATION P P. e D,

BIT POSITION 1 2 3 4 5 | 6
BINARY POSITION NUMBER | 001 | 010 | 071 | 100 | 101

Data bits
 Parity bits

Step 3: Determine the parity bits as follows:

Bit P, checks bit positions 1, 3, 5, and 7 and must be a 0 for there to be an
even number of 1s (2) in this group.

-~

Bit P, checks bit positions 2, 3, 6, and 7 and must be a 0 for there to be an
even number of 1s (2) in this group.

Bit P, checks bit positions 4, S, 6, and 7 and must be a 1 for there to be an
even number of 1s (2) in this group.

Step 4: These parity bits are entered in Table 2—12, and the resulting combined code
is 0011001.

Related Problem Determine the Hamming code for the BCD number 1000 using even parity.

l EXAMPLE 2-42
Determine the Hamming code for the data bits 10110 using odd parity.

Solution Step 1: Determine the number of parity bits required. In this case the number of data
bits, 4, is five. From the previous example we know that p = 3 will not work.
Try p = 4:
2> =2
d+p+1=5+4+1=10
Four parity bits are sufficient.
Total code bits =5 +4 =9

Step 2: Construct a bit position table, Table 2—13. and enter the data bits. Parity bits
are determined in the following steps. Notice that £, is in bil position 8.

TABLE 2-13

BIT DESIGNATION
BIT POSITION ‘
BINARY POSITION NUMBER i : ; 0110 0111

Data bits

Step 3: Determine the parity bits as follows:

Bit P, checks bit positions 1, 3, 5, 7, and 9 and must be a 1 for there to be an
odd number of 1s (3) in this group.

Bit £, checks bit positions 2, 3, 6, and 7 and must be a O for there to be an
odd number of 1s (3) in this group.

Bit P, checks bit positions 4, 5, 6, and 7 and must be a | for there to be an
odd number of 1s (3) in this group.

Bit £, checks bit positions 8 and 9 and must be a 1 for there to be an odd
number of 1s (1) in this group.

Step 4: These parity bits are entered in the Table 2—13, and the resulting combined
code is 101101110.

Related Problem Determine the Hamming code for 11001 using odd parity.

Detecting and Correcting an
Error with the Hamming Code
» Let's look at the example

I EXAMPLE 2-43 .
Assume that the code word in Example 2—41 (0011001) is transmitted and that

0010001 is received. The receiver does not “know™ what was transmitted and must
look for proper parities to determine if the code is correct. Designate any error that has
occurred in transmission if even parity is used.

Solution First, make a bit position table, as indicated in Table 2—14.

TABLE 2-14

BIT DESIGNATION | P : DAY
BIT POSITION 2 G A
BINARY POSITION NUMBER 011 | 100

First parity check:
Bit P, checks positions 1, 3, 5, and 7.
There are two 1s in this group.

Parity check is good.

v

0 (LSB)

Second parity check:
Bit P, checks positions 2, 3, 6, and 7.
There are two 1s in this group.

Parity check is good.

v
<

Third parity check:
Bit P; checks positions 4, 5, 6, and 7.
There is one 1 in this group.

Parity check is bad.

v

1 (MSB)

Resuli:
The error position code is 100 (binary four). This says that the bit in position 4 is in
error. It is a 0 and should be a 1. The corrected code is 0011001, which agrees with
the transmitted code.

Related Problemn Repeat the process illustrated in the example if the received code is 0111001.

I EXAMPLE 2-44

Solution

BIT DESIGNATION
BIT POSITION

Received code

Related Problem

The code 101101010 is received. Correct any errors. There are four parity bits, and
odd parity is used.

First, make a bit position table like Table 2—15.

TABLE 2-15

BINARY POSITION NUMBER ‘ 0111

D, LN, D,
3 4 | ‘ 7

0

i
1

i i LN TS

First parity check: !
Bit P, checks positions 1, 3, 5, 7, and 9.
There are two 1s in this group.

Parity check is bad. > 1 (LSB)

Second parity check:
Bit P, checks positions 2, 3, 6, and 7.
There are two Is in this group.
Parity check is bad. - 1

Third parity check:
Bit P; checks positions 4, 5, 6, and 7.
There are two 1s in this group.
Parity check is bad. S |

Fourth pariry check:
Bit P, checks positions 8 and 9.
There is one 1 in this group.
Parity check is good. — 0(MSB)

Resuli:
The error position code is 0111 (binary seven). This says that the bit in position 7 is
in error. The corrected code is therefore 101101110.

The code 101111001 is received. Correct any error if odd parity is used.

That's all for this chapter

* Try to solve questions given at the end of
each section

