
EEE130 Digital Electronics I

Lecture #2

-Number Systems, Operations and Codes-

By Dr. Shahrel A. Suandi

Topics to be discussed

• 2-1 Decimal Numbers

• 2-2 Binary Numbers

• 2-3 Decimal-to-Binary Conversion

• 2-4 Binary Arithmetic

• 2-5 1’s and 2’s Complements of Binary Numbers

• 2-6 Signed Numbers

• 2-7 Arithmetic Operations with Signed Numbers

• 2-8 Hexadecimal Numbers

• 2-9 Octal Numbers

• 2-10 Binary Coded Numbers (BCD)

• 2-11 Digital Codes

• 2-12 Error Detection and Correction Codes

2-1 Decimal Numbers

• These numbers are used every day in our
daily lives

• Actually, decimal numbers is a type of
weighted system numbers

• Why??

– The position of each digit in a decimal number
indicates the magnitude of the quantity
represented and can be assigned a weight

• The weight  positive powers of ten

: : :102 101 100

Fractional numbers in decimal

numbers

• The weights for fractional numbers in

decimal numbers are negative powers of

ten

– They decrease from left to right beginning

with

• They are written as follows

102101100:10¡110¡210¡3 : : :

10¡1

Decimal point

What is the meaning of weighted

number system??

• As mentioned before, each number will be

multiplied by its weight to get the actual number

• Example:

– Let’s consider 23 (in decimal number) or, in words

twenty three

2 3

23

2£101 3£100

2 3

23

101100

2-2 Binary Numbers

• These types of numbers have only two

digits: 1 and 0 (bits)

• Therefore, it is less complicated compared

to decimal numbers

• The base is two and written as

• In general, with bits we can count up to a

number equal to

(0011)2 = 310
n

2n¡1

Application using binary numbers

• A counting system that counts tennis ball

The weighting structure of binary

numbers

• Similar to decimal numbers, binary

numbers are weighted number systems

• How the weights are structured?

– Based on powers of two, which begins with 0

– Refer to Table 2-2 for clearer picture

• Let’s look at the two examples in our text

book

2-3 Decimal-to-Binary Conversion

• After learning decimal and binary numbers,

we must be able to convert between these

two

• Decimal-to-binary conversion methods:

– Sum-of-weight method

•

– Repeated division-by-2 method

• Check page 54

9 = 8+1¡! 9 = 23+21 This weight

must be

Converting Decimal Fractions to

Binary

• There are two methods:

– Sum-of-weights

•

– Repeated multiplication by 2

• Let’s look at page 56

0:625 = 0:5+0:125 = 2¡1+2¡3 = 0:101

2-4 Binary Arithmetic

• There are 4 arithmetic operations using
binary

– Binary addition

– Binary subtraction

– Binary multiplication

– Binary division

• All arithmetic operations follow the same
procedure as decimal numbers have –
carry, borrow, partial products

2-5 1’s and 2’s Complements of

Binary Numbers
• These complements of binary numbers are

important because they permit the
representation of negative numbers

• How to find 1’s complement?
– By changing all 1s to 0s and all 0s to 1s

• How to find 2’s complement?
– By changing all 1s to 0s and all 0s to 1s, then add 1

to the LSB
– Alternative method to find 2’s complement

• Start with LSB and write the bits as they are up to and
including the first 1

• Take the 1’s complements of the remaining bits

Example of obtaining 2’s complement

of a negative binary number

Let’s do some exercises!!

• Section 2-5 Review

Questions

1. Determine the 1’s

complement of each

binary number:

2. Determine the 2’s

complement of each

binary number:

00011010 11110111 10001101

11100101 00001000 01110010

00010110 11111100 10010001

11101010 00000100 01101111

2-6 Signed Numbers (1)

• The sign bit

– The left-most bit in a signed binary number is

the sign bit, which tells us whether the

number is positive or negative

• 0: positive, 1: negative

• Sign-magnitude form

– The magnitude bits are the remaining bits

after the sign-bit

00011001
Sign bit

Magnitude bits

Signed numbers (2)

• 1’s complement form

– In the 1’s complement form, a negative number is the

1’s complement of the corresponding positive number

• 2’s complement form

– In the 2’s complement form, a negative number is the

2’s complement of the corresponding positive number

• The decimal value of signed numbers

– Sign-magnitude

– 1’s complement

– 2’s complement

Signed Numbers (3)

• Range of Signed Integer Numbers That

Can be Represented

– 8 bit = 1 Byte

– With one byte or eight bits, 256 different

numbers can be represented. How about 16

bits and 32 bits?? More numbers can be used

– To know the total of combinations of n bits:

• Total combinations =

• The range of values for n-bit numbers is

2n

¡(2n¡1)to(2n¡1¡1)

Signed Numbers (4)

• Floating-point numbers
– Consists of two parts;

• Mantissa – the part of floating-point number that represents
the magnitude of the number

• Exponent – the part of a floating-point number that
represents the number of places that the decimal point (or
binary) is to be moved

• Formula

S Exponent (E) Mantissa (fraction, F)

1 bit 8 bits 23 bits

Number = (¡1)S(1+F)(2E¡127)

2-7 Arithmetic Operations with

Signed Numbers
• It is important to know this for 2’s complement form

because this type of binary representation is widely used
in computers and microprocessor-based systems

• Addition
– Both positive number

– Positive number with magnitude larger than negative number

– Negative number with magnitude larger than positive number

– Both numbers negative

• We also need to know:
– Overflow condition – when two numbers are added and the

number of bits required to represent the sum exceeds the
number of bits in the two numbers  resulting incorrect sign bit

– Numbers are added two at a time – for addition, two numbers
are added at one time (example 2-19)

Subtraction of signed numbers

• Subtraction is a special case of addition –
change the sign of the subtrahend and adds it to
the minuend

• What is subtrahend and minuend?
– Subtrahend – the amount/quantity to be subtracted

(book example: 6)

– Minuend – the amount/quantity to be subtracted from
(book example: 9)

• Big hints:
– To subtract two signed number, take the 2’s

complement of the subtrahend and add. Discard any
final carry bit

Multiplication of signed numbers

• Numbers involved in a multiplication are
multiplicand, multiplier and product

• Performing multiplication using addition:

– Direct addition and partial products

• When two binary numbers are multiplied,
both numbers must be in true
(uncompleted) form

• Look at example 2-22 for more details on
this operation

Division of signed numbers

• Numbers involved in a division are

dividend, divisor and quotient

• Division can also be performed using an

adder – due to division is accomplished

using subtraction in computers, and as

division is also using adder, division can

also be performed with an adder

• The operation stops when the quotient is 0

2-8 Hexadecimal Numbers(1)

• Hexadecimal numbers are one of the most important
numbers in digital systems, as “Assembly” language
(machine language) uses this number to program a
micro processor system

• It uses sixteen characteristics, but easy to read as each
of its 4 bits are used to represent a number between 0-
16

• Binary-to-hexadecimal conversion

• Hexadecimal-to-binary conversion

• Hexadecimal-to-decimal conversion
– Convert to binary and followed by decimal

• Decimal-to-hexadecimal conversion

2-8 Hexadecimal Numbers(2)

• Hexadecimal addition

– Use common addition method – less than 15,

write the answer in hexadecimal number, and

if >15, carry one to the next bit

• Hexadecimal subtraction

– There are three ways can be used (see next

slide)

– They are all 2’s complement

Method 1

Method 2

Method 3

2-9 Octal Numbers

• This number is composed of eight digits; 0-7

• Octal-to-decimal conversion

– Similar to others

• Decimal-to-octal conversion

– Using this following technique

• Binary-to-octal conversion

– Quite similar with binary-to-hexadecimal conversion

– If there are not enough bit (for the most left bit), add 1

or 2 zeros as 0s will never affect the binary numbers

2-10 Binary Coded Decimal (BCD)

• BCD is a way to express each of the decimal digits with
a binary code
– There are only 10 groups in BCD system

• 8421 Code
– This is a type of BCD code which indicates the binary weights

– BCD 8421 code

• Invalid codes – these are the codes that are not used in
BCD (remember that BCD is a 10 groups number AND
NOT 16), so A to F are not included

• BCD addition – carefully do this as there are valid and
invalid answers
– For invalid answers, just add 6 to them

2-11 Digital Codes

• In digital systems, there are various types of codes and expressed in
terms of numbers, characters, alphanumeric, etc.

• Famous codes are Gray code and ASCII

• Gray code:
– This code is unweighted and is not an arithmetic code

– Specially used in shaft position encoders

– Binary-to-Gray code conversion
• MSB Gray code = MSB Binary code

• From left to right, add each adjacent pair of binary code bits to get the next
Gray code bit. Discard carries

– Gray-to-binary code conversion
• MSB binary code = MSB Gray code

• Add each binary code bit generated to the Gray code bit in the next adjacent
position. Discard carries

Gray code application

• Problems arise if binary code is used in this application
when 111000 (counterclockwise) 3 bits change

• This problem might be solved if Gray code is used due to
only one bit might cause problem

Alphanumeric

• Alphanumeric codes are codes that
represent numbers and alphabetic
characters (letters)

• Consists of 10 decimal digits and 26
letters of the alphabet

• Bits required is 6 bits  in binary then we
need more than which is

– The remaining 28 bits are used for other
purposes like periods, colons, semicolons, etc.

25 = 32 26 = 64

ASCII

• Stands for “American Standard Code for

Information Interchange”

• Has 128 characters and symbols

– Represented in 7-bit binary code

– First 32 ASCII characters are used for control

purposes, like “null”, “line fee”, etc.

• Extended ASCII characters

– Used for other than English language (additional of

128 characters)

– Adopted by IBM to be used in PCs

2-12 Error Detection and

Correction Codes
• We can detect a single bit error, or detect and

correct a single bit error

• How to do this??
– By performing parity check

• Parity method for error detection
– Parity bit is used in many systems as a means for bit

error detection

– Attached at the beginning or end of the code

– Parity, which is odd or even, is assigned to a group of
bits for error detection purpose

• Note here that parity is either odd or even

• Odd – total number of 1s is odd, and vice versa to even

– Detecting an error
• By using odd or even information. Let’s try it

Parity method for error detection

The Hamming Error Correction

Code
• Hamming code provides for single-error

correction
– It provides more information so that correction can

also be done besides detection

• Number of parity bits
– We need to decide how many parity bits to be used to

detect and correct an error

– Check Eq. 2-1

• Detecting and correcting an error with the
Hamming code
– Let’s try to look at the examples and related problems

for more intuitive explanations

Detecting and Correcting an

Error with the Hamming Code
• Let’s look at the example

That’s all for this chapter

• Try to solve questions given at the end of

each section

