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Topics to be discussed 

• 2-1 Decimal Numbers

• 2-2 Binary Numbers

• 2-3 Decimal-to-Binary Conversion

• 2-4 Binary Arithmetic

• 2-5 1’s and 2’s Complements of Binary Numbers

• 2-6 Signed Numbers

• 2-7 Arithmetic Operations with Signed Numbers

• 2-8 Hexadecimal Numbers

• 2-9 Octal Numbers

• 2-10 Binary Coded Numbers (BCD)

• 2-11 Digital Codes

• 2-12 Error Detection and Correction Codes



2-1 Decimal Numbers

• These numbers are used every day in our 
daily lives

• Actually, decimal numbers is a type of 
weighted system numbers

• Why??

– The position of each digit in a decimal number 
indicates the magnitude of the quantity 
represented and can be assigned a weight

• The weight  positive powers of ten 

: : :102 101 100



Fractional numbers in decimal 

numbers

• The weights for fractional numbers in 

decimal numbers are negative powers of 

ten 

– They decrease from left to right beginning 

with 

• They are written as follows

102101100:10¡110¡210¡3 : : :

10¡1

Decimal point



What is the meaning of weighted 

number system??

• As mentioned before, each number will be 

multiplied by its weight to get the actual number

• Example:

– Let’s consider 23 (in decimal number) or, in words 

twenty three

2 3

23

2£101 3£100

2 3

23

101100



2-2 Binary Numbers

• These types of numbers have only two 

digits: 1 and 0 (bits)

• Therefore, it is less complicated compared 

to decimal numbers

• The base is two and written as 

• In general, with    bits we can count up to a 

number equal to 

(0011)2 = 310
n

2n¡1



Application using binary numbers

• A counting system that counts tennis ball



The weighting structure of binary 

numbers

• Similar to decimal numbers, binary 

numbers are weighted number systems

• How the weights are structured?

– Based on powers of two, which begins with 0

– Refer to Table 2-2 for clearer picture 

• Let’s look at the two examples in our text 

book



2-3 Decimal-to-Binary Conversion

• After learning decimal and binary numbers, 

we must be able to convert between these 

two

• Decimal-to-binary conversion methods:

– Sum-of-weight method

•

– Repeated division-by-2 method

• Check page 54

9 = 8+1¡! 9 = 23+21 This weight 

must be 



Converting Decimal Fractions to 

Binary

• There are two methods:

– Sum-of-weights

•

– Repeated multiplication by 2 

• Let’s look at page 56

0:625 = 0:5+0:125 = 2¡1+2¡3 = 0:101



2-4 Binary Arithmetic

• There are 4 arithmetic operations using 
binary

– Binary addition

– Binary subtraction

– Binary multiplication

– Binary division

• All arithmetic operations follow the same 
procedure as decimal numbers have –
carry, borrow, partial products



2-5 1’s and 2’s Complements of 

Binary Numbers
• These complements of binary numbers are 

important because they permit the 
representation of negative numbers

• How to find 1’s complement?
– By changing all 1s to 0s and all 0s to 1s

• How to find 2’s complement?
– By changing all 1s to 0s and all 0s to 1s, then add 1 

to the LSB
– Alternative method to find 2’s complement

• Start with LSB and write the bits as they are up to and 
including the first 1

• Take the 1’s complements of the remaining bits



Example of obtaining 2’s complement 

of a negative binary number



Let’s do some exercises!!

• Section 2-5 Review 

Questions

1. Determine the 1’s 

complement of each 

binary number:

2. Determine the 2’s 

complement of each 

binary number:

00011010 11110111 10001101

11100101 00001000 01110010

00010110 11111100 10010001

11101010 00000100 01101111



2-6 Signed Numbers (1)

• The sign bit

– The left-most bit in a signed binary number is 

the sign bit, which tells us whether the 

number is positive or negative

• 0: positive, 1: negative

• Sign-magnitude form

– The magnitude bits are the remaining bits 

after the sign-bit

00011001
Sign bit

Magnitude bits



Signed numbers (2)

• 1’s complement form

– In the 1’s complement form, a negative number is the 

1’s complement of the corresponding positive number

• 2’s complement form 

– In the 2’s complement form, a negative number is the 

2’s complement of the corresponding positive number

• The decimal value of signed numbers

– Sign-magnitude

– 1’s complement

– 2’s complement 



Signed Numbers (3)

• Range of Signed Integer Numbers That 

Can be Represented

– 8 bit = 1 Byte

– With one byte or eight bits, 256 different 

numbers can be represented. How about 16 

bits and 32 bits?? More numbers can be used

– To know the total of combinations of n bits:

• Total combinations = 

• The range of values for n-bit numbers is 

2n

¡(2n¡1)to(2n¡1¡1)



Signed Numbers (4)

• Floating-point numbers
– Consists of two parts;

• Mantissa – the part of floating-point number that represents 
the magnitude of the number

• Exponent – the part of a floating-point number that 
represents the number of places that the decimal point (or 
binary) is to be moved

• Formula

S Exponent (E) Mantissa (fraction, F)

1 bit 8 bits 23 bits

Number = (¡1)S(1+F)(2E¡127)



2-7 Arithmetic Operations with 

Signed Numbers
• It is important to know this for 2’s complement form 

because this type of binary representation is widely used 
in computers and microprocessor-based systems

• Addition
– Both positive number

– Positive number with magnitude larger than negative number

– Negative number with magnitude larger than positive number

– Both numbers negative

• We also need to know:
– Overflow condition – when two numbers are added and the 

number of bits required to represent the sum exceeds the 
number of bits in the two numbers  resulting incorrect sign bit

– Numbers are added two at a time – for addition, two numbers 
are added at one time (example 2-19)



Subtraction of signed numbers

• Subtraction is a special case of addition –
change the sign of the subtrahend and adds it to 
the minuend

• What is subtrahend and minuend?
– Subtrahend – the amount/quantity to be subtracted 

(book example: 6)

– Minuend – the amount/quantity to be subtracted from 
(book example: 9)

• Big hints: 
– To subtract two signed number, take the 2’s 

complement of the subtrahend and add. Discard any 
final carry bit



Multiplication of signed numbers

• Numbers involved in a multiplication are 
multiplicand, multiplier and product

• Performing multiplication using addition:

– Direct addition and partial products

• When two binary numbers are multiplied, 
both numbers must be in true 
(uncompleted) form

• Look at example 2-22 for more details on 
this operation



Division of signed numbers

• Numbers involved in a division are 

dividend, divisor and quotient

• Division can also be performed using  an 

adder – due to division is accomplished 

using subtraction in computers, and as 

division is also using adder, division can 

also be performed with an adder

• The operation stops when the quotient is 0



2-8 Hexadecimal Numbers(1)

• Hexadecimal numbers are one of the most important 
numbers in digital systems, as “Assembly” language 
(machine language) uses this number to program a 
micro processor system 

• It uses sixteen characteristics, but easy to read as each 
of its 4 bits are used to represent a number between 0-
16

• Binary-to-hexadecimal conversion

• Hexadecimal-to-binary conversion

• Hexadecimal-to-decimal conversion
– Convert to binary and followed by decimal

• Decimal-to-hexadecimal conversion



2-8 Hexadecimal Numbers(2)

• Hexadecimal addition

– Use common addition method – less than 15, 

write the answer in hexadecimal number, and 

if >15, carry one to the next bit

• Hexadecimal subtraction 

– There are three ways can be used (see next 

slide)

– They are all 2’s complement



Method 1

Method 2

Method 3



2-9 Octal Numbers

• This number is composed of eight digits; 0-7 

• Octal-to-decimal conversion

– Similar to others

• Decimal-to-octal conversion

– Using this following technique

• Binary-to-octal conversion

– Quite similar with binary-to-hexadecimal conversion

– If there are not enough bit (for the most left bit), add 1 

or 2 zeros as 0s will never affect the binary numbers



2-10 Binary Coded Decimal (BCD)

• BCD is a way to express each of the decimal digits with 
a binary code
– There are only 10 groups in BCD system

• 8421 Code
– This is a type of BCD code which indicates the binary weights

– BCD 8421 code

• Invalid codes – these are the codes that are not used in 
BCD (remember that BCD is a 10 groups number AND 
NOT 16), so A to F are not included

• BCD addition – carefully do this as there are valid and 
invalid answers
– For invalid answers, just add 6 to them



2-11 Digital Codes

• In digital systems, there are various types of codes and expressed in 
terms of numbers, characters, alphanumeric, etc.

• Famous codes are Gray code and ASCII

• Gray code:
– This code is unweighted and is not an arithmetic code

– Specially used in shaft position encoders

– Binary-to-Gray code conversion
• MSB Gray code = MSB Binary code

• From left to right, add each adjacent pair of binary code bits to get the next 
Gray code bit. Discard carries

– Gray-to-binary code conversion
• MSB binary code = MSB Gray code

• Add each binary code bit generated to the Gray code bit in the next adjacent 
position. Discard carries



Gray code application 

• Problems arise if binary code is used in this application 
when 111000 (counterclockwise) 3 bits change

• This problem might be solved if Gray code is used due to 
only one bit might cause problem



Alphanumeric

• Alphanumeric codes are codes that 
represent numbers and alphabetic 
characters (letters)

• Consists of 10 decimal digits and 26 
letters of the alphabet

• Bits required is 6 bits  in binary then we 
need more than               which is

– The remaining 28 bits are used for other 
purposes like periods, colons, semicolons, etc. 

25 = 32 26 = 64



ASCII

• Stands for “American Standard Code for 

Information Interchange”

• Has 128 characters and symbols

– Represented in 7-bit binary code

– First 32 ASCII characters are used for control 

purposes, like “null”, “line fee”, etc.

• Extended ASCII characters

– Used for other than English language (additional of 

128 characters)

– Adopted by IBM to be used in PCs



2-12 Error Detection and 

Correction Codes
• We can detect a single bit error, or detect and 

correct a single bit error

• How to do this??
– By performing parity check 

• Parity method for error detection
– Parity bit is used in many systems as a means for bit 

error detection

– Attached at the beginning or end of the code

– Parity, which is odd or even, is assigned to a group of 
bits for error detection purpose

• Note here that parity is either odd or even

• Odd – total number of 1s is odd, and vice versa to even

– Detecting an error
• By using odd or even information. Let’s try it 



Parity method for error detection



The Hamming Error Correction 

Code
• Hamming code provides for single-error 

correction
– It provides more information so that correction can 

also be done besides detection

• Number of parity bits
– We need to decide how many parity bits to be used to 

detect and correct an error

– Check Eq. 2-1

• Detecting and correcting an error with the 
Hamming code
– Let’s try to look at the examples and related problems 

for more intuitive explanations







Detecting and Correcting an 

Error with the Hamming Code
• Let’s look at the example







That’s all for this chapter

• Try to solve questions given at the end of 

each section


